Properties

Label 2-252-1.1-c7-0-15
Degree $2$
Conductor $252$
Sign $-1$
Analytic cond. $78.7210$
Root an. cond. $8.87248$
Motivic weight $7$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 240·5-s + 343·7-s − 702·11-s − 3.95e3·13-s + 3.40e3·17-s − 4.90e4·19-s + 1.15e4·23-s − 2.05e4·25-s − 4.96e4·29-s − 1.13e5·31-s + 8.23e4·35-s − 6.68e4·37-s + 3.60e5·41-s − 7.65e5·43-s + 1.34e6·47-s + 1.17e5·49-s − 3.58e5·53-s − 1.68e5·55-s − 9.30e5·59-s − 1.31e6·61-s − 9.49e5·65-s + 1.89e6·67-s − 2.27e5·71-s + 7.84e5·73-s − 2.40e5·77-s − 2.10e6·79-s − 8.62e6·83-s + ⋯
L(s)  = 1  + 0.858·5-s + 0.377·7-s − 0.159·11-s − 0.499·13-s + 0.168·17-s − 1.64·19-s + 0.197·23-s − 0.262·25-s − 0.378·29-s − 0.683·31-s + 0.324·35-s − 0.217·37-s + 0.817·41-s − 1.46·43-s + 1.88·47-s + 1/7·49-s − 0.331·53-s − 0.136·55-s − 0.589·59-s − 0.743·61-s − 0.429·65-s + 0.769·67-s − 0.0755·71-s + 0.236·73-s − 0.0601·77-s − 0.479·79-s − 1.65·83-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 252 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(8-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 252 ^{s/2} \, \Gamma_{\C}(s+7/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(252\)    =    \(2^{2} \cdot 3^{2} \cdot 7\)
Sign: $-1$
Analytic conductor: \(78.7210\)
Root analytic conductor: \(8.87248\)
Motivic weight: \(7\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 252,\ (\ :7/2),\ -1)\)

Particular Values

\(L(4)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{9}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
7 \( 1 - p^{3} T \)
good5 \( 1 - 48 p T + p^{7} T^{2} \)
11 \( 1 + 702 T + p^{7} T^{2} \)
13 \( 1 + 3958 T + p^{7} T^{2} \)
17 \( 1 - 3408 T + p^{7} T^{2} \)
19 \( 1 + 49036 T + p^{7} T^{2} \)
23 \( 1 - 11514 T + p^{7} T^{2} \)
29 \( 1 + 49662 T + p^{7} T^{2} \)
31 \( 1 + 113320 T + p^{7} T^{2} \)
37 \( 1 + 66886 T + p^{7} T^{2} \)
41 \( 1 - 360900 T + p^{7} T^{2} \)
43 \( 1 + 765292 T + p^{7} T^{2} \)
47 \( 1 - 1344876 T + p^{7} T^{2} \)
53 \( 1 + 358962 T + p^{7} T^{2} \)
59 \( 1 + 930528 T + p^{7} T^{2} \)
61 \( 1 + 1318834 T + p^{7} T^{2} \)
67 \( 1 - 1893464 T + p^{7} T^{2} \)
71 \( 1 + 227994 T + p^{7} T^{2} \)
73 \( 1 - 784934 T + p^{7} T^{2} \)
79 \( 1 + 2100892 T + p^{7} T^{2} \)
83 \( 1 + 8629308 T + p^{7} T^{2} \)
89 \( 1 + 5903100 T + p^{7} T^{2} \)
97 \( 1 - 773846 T + p^{7} T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.32710956583376379242033298416, −9.396063367773072340913032960223, −8.449395644226465842662660098935, −7.32387314611039918924178205954, −6.19895322353618508221340771101, −5.27237662271730489677279398532, −4.10764779194060567809777612935, −2.53696602653211729686934420842, −1.60681576002915275841966501844, 0, 1.60681576002915275841966501844, 2.53696602653211729686934420842, 4.10764779194060567809777612935, 5.27237662271730489677279398532, 6.19895322353618508221340771101, 7.32387314611039918924178205954, 8.449395644226465842662660098935, 9.396063367773072340913032960223, 10.32710956583376379242033298416

Graph of the $Z$-function along the critical line