L(s) = 1 | + 240·5-s + 343·7-s − 702·11-s − 3.95e3·13-s + 3.40e3·17-s − 4.90e4·19-s + 1.15e4·23-s − 2.05e4·25-s − 4.96e4·29-s − 1.13e5·31-s + 8.23e4·35-s − 6.68e4·37-s + 3.60e5·41-s − 7.65e5·43-s + 1.34e6·47-s + 1.17e5·49-s − 3.58e5·53-s − 1.68e5·55-s − 9.30e5·59-s − 1.31e6·61-s − 9.49e5·65-s + 1.89e6·67-s − 2.27e5·71-s + 7.84e5·73-s − 2.40e5·77-s − 2.10e6·79-s − 8.62e6·83-s + ⋯ |
L(s) = 1 | + 0.858·5-s + 0.377·7-s − 0.159·11-s − 0.499·13-s + 0.168·17-s − 1.64·19-s + 0.197·23-s − 0.262·25-s − 0.378·29-s − 0.683·31-s + 0.324·35-s − 0.217·37-s + 0.817·41-s − 1.46·43-s + 1.88·47-s + 1/7·49-s − 0.331·53-s − 0.136·55-s − 0.589·59-s − 0.743·61-s − 0.429·65-s + 0.769·67-s − 0.0755·71-s + 0.236·73-s − 0.0601·77-s − 0.479·79-s − 1.65·83-s + ⋯ |
Λ(s)=(=(252s/2ΓC(s)L(s)−Λ(8−s)
Λ(s)=(=(252s/2ΓC(s+7/2)L(s)−Λ(1−s)
Particular Values
L(4) |
= |
0 |
L(21) |
= |
0 |
L(29) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1 |
| 7 | 1−p3T |
good | 5 | 1−48pT+p7T2 |
| 11 | 1+702T+p7T2 |
| 13 | 1+3958T+p7T2 |
| 17 | 1−3408T+p7T2 |
| 19 | 1+49036T+p7T2 |
| 23 | 1−11514T+p7T2 |
| 29 | 1+49662T+p7T2 |
| 31 | 1+113320T+p7T2 |
| 37 | 1+66886T+p7T2 |
| 41 | 1−360900T+p7T2 |
| 43 | 1+765292T+p7T2 |
| 47 | 1−1344876T+p7T2 |
| 53 | 1+358962T+p7T2 |
| 59 | 1+930528T+p7T2 |
| 61 | 1+1318834T+p7T2 |
| 67 | 1−1893464T+p7T2 |
| 71 | 1+227994T+p7T2 |
| 73 | 1−784934T+p7T2 |
| 79 | 1+2100892T+p7T2 |
| 83 | 1+8629308T+p7T2 |
| 89 | 1+5903100T+p7T2 |
| 97 | 1−773846T+p7T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.32710956583376379242033298416, −9.396063367773072340913032960223, −8.449395644226465842662660098935, −7.32387314611039918924178205954, −6.19895322353618508221340771101, −5.27237662271730489677279398532, −4.10764779194060567809777612935, −2.53696602653211729686934420842, −1.60681576002915275841966501844, 0,
1.60681576002915275841966501844, 2.53696602653211729686934420842, 4.10764779194060567809777612935, 5.27237662271730489677279398532, 6.19895322353618508221340771101, 7.32387314611039918924178205954, 8.449395644226465842662660098935, 9.396063367773072340913032960223, 10.32710956583376379242033298416