Properties

Label 2-252-1.1-c3-0-6
Degree $2$
Conductor $252$
Sign $-1$
Analytic cond. $14.8684$
Root an. cond. $3.85596$
Motivic weight $3$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 6·5-s + 7·7-s + 12·11-s − 82·13-s + 30·17-s + 68·19-s − 216·23-s − 89·25-s − 246·29-s − 112·31-s − 42·35-s + 110·37-s + 246·41-s − 172·43-s − 192·47-s + 49·49-s − 558·53-s − 72·55-s − 540·59-s + 110·61-s + 492·65-s + 140·67-s + 840·71-s − 550·73-s + 84·77-s − 208·79-s − 516·83-s + ⋯
L(s)  = 1  − 0.536·5-s + 0.377·7-s + 0.328·11-s − 1.74·13-s + 0.428·17-s + 0.821·19-s − 1.95·23-s − 0.711·25-s − 1.57·29-s − 0.648·31-s − 0.202·35-s + 0.488·37-s + 0.937·41-s − 0.609·43-s − 0.595·47-s + 1/7·49-s − 1.44·53-s − 0.176·55-s − 1.19·59-s + 0.230·61-s + 0.938·65-s + 0.255·67-s + 1.40·71-s − 0.881·73-s + 0.124·77-s − 0.296·79-s − 0.682·83-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 252 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 252 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(252\)    =    \(2^{2} \cdot 3^{2} \cdot 7\)
Sign: $-1$
Analytic conductor: \(14.8684\)
Root analytic conductor: \(3.85596\)
Motivic weight: \(3\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 252,\ (\ :3/2),\ -1)\)

Particular Values

\(L(2)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
7 \( 1 - p T \)
good5 \( 1 + 6 T + p^{3} T^{2} \)
11 \( 1 - 12 T + p^{3} T^{2} \)
13 \( 1 + 82 T + p^{3} T^{2} \)
17 \( 1 - 30 T + p^{3} T^{2} \)
19 \( 1 - 68 T + p^{3} T^{2} \)
23 \( 1 + 216 T + p^{3} T^{2} \)
29 \( 1 + 246 T + p^{3} T^{2} \)
31 \( 1 + 112 T + p^{3} T^{2} \)
37 \( 1 - 110 T + p^{3} T^{2} \)
41 \( 1 - 6 p T + p^{3} T^{2} \)
43 \( 1 + 4 p T + p^{3} T^{2} \)
47 \( 1 + 192 T + p^{3} T^{2} \)
53 \( 1 + 558 T + p^{3} T^{2} \)
59 \( 1 + 540 T + p^{3} T^{2} \)
61 \( 1 - 110 T + p^{3} T^{2} \)
67 \( 1 - 140 T + p^{3} T^{2} \)
71 \( 1 - 840 T + p^{3} T^{2} \)
73 \( 1 + 550 T + p^{3} T^{2} \)
79 \( 1 + 208 T + p^{3} T^{2} \)
83 \( 1 + 516 T + p^{3} T^{2} \)
89 \( 1 - 1398 T + p^{3} T^{2} \)
97 \( 1 - 1586 T + p^{3} T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.36769045390804808334607189627, −10.01949038908630846224976367690, −9.364713950783082040274656552290, −7.83925777564651194973630289705, −7.48693625443598578444463711977, −5.94302480272967733000104894711, −4.78931704989477250882495591841, −3.61943208330552797867352883915, −2.00270477810762360828902519984, 0, 2.00270477810762360828902519984, 3.61943208330552797867352883915, 4.78931704989477250882495591841, 5.94302480272967733000104894711, 7.48693625443598578444463711977, 7.83925777564651194973630289705, 9.364713950783082040274656552290, 10.01949038908630846224976367690, 11.36769045390804808334607189627

Graph of the $Z$-function along the critical line