Properties

Label 2-252-1.1-c1-0-1
Degree $2$
Conductor $252$
Sign $-1$
Analytic cond. $2.01223$
Root an. cond. $1.41853$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 4·5-s − 7-s − 2·11-s − 6·13-s + 4·17-s − 4·19-s − 2·23-s + 11·25-s + 2·29-s + 4·35-s + 2·37-s − 4·43-s − 12·47-s + 49-s + 6·53-s + 8·55-s + 8·59-s + 6·61-s + 24·65-s − 8·67-s − 14·71-s − 2·73-s + 2·77-s + 12·79-s + 4·83-s − 16·85-s + 6·91-s + ⋯
L(s)  = 1  − 1.78·5-s − 0.377·7-s − 0.603·11-s − 1.66·13-s + 0.970·17-s − 0.917·19-s − 0.417·23-s + 11/5·25-s + 0.371·29-s + 0.676·35-s + 0.328·37-s − 0.609·43-s − 1.75·47-s + 1/7·49-s + 0.824·53-s + 1.07·55-s + 1.04·59-s + 0.768·61-s + 2.97·65-s − 0.977·67-s − 1.66·71-s − 0.234·73-s + 0.227·77-s + 1.35·79-s + 0.439·83-s − 1.73·85-s + 0.628·91-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 252 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 252 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(252\)    =    \(2^{2} \cdot 3^{2} \cdot 7\)
Sign: $-1$
Analytic conductor: \(2.01223\)
Root analytic conductor: \(1.41853\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 252,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
7 \( 1 + T \)
good5 \( 1 + 4 T + p T^{2} \)
11 \( 1 + 2 T + p T^{2} \)
13 \( 1 + 6 T + p T^{2} \)
17 \( 1 - 4 T + p T^{2} \)
19 \( 1 + 4 T + p T^{2} \)
23 \( 1 + 2 T + p T^{2} \)
29 \( 1 - 2 T + p T^{2} \)
31 \( 1 + p T^{2} \)
37 \( 1 - 2 T + p T^{2} \)
41 \( 1 + p T^{2} \)
43 \( 1 + 4 T + p T^{2} \)
47 \( 1 + 12 T + p T^{2} \)
53 \( 1 - 6 T + p T^{2} \)
59 \( 1 - 8 T + p T^{2} \)
61 \( 1 - 6 T + p T^{2} \)
67 \( 1 + 8 T + p T^{2} \)
71 \( 1 + 14 T + p T^{2} \)
73 \( 1 + 2 T + p T^{2} \)
79 \( 1 - 12 T + p T^{2} \)
83 \( 1 - 4 T + p T^{2} \)
89 \( 1 + p T^{2} \)
97 \( 1 + 2 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.83481765842467689738267568685, −10.65141343664047244023029939050, −9.763849160343204480377812055766, −8.349702149825146102162236283121, −7.69907439436331841244821924582, −6.81660893407171735772005884639, −5.13729108364941390504198607970, −4.08565362497912592132601547351, −2.85749596756875682654277889497, 0, 2.85749596756875682654277889497, 4.08565362497912592132601547351, 5.13729108364941390504198607970, 6.81660893407171735772005884639, 7.69907439436331841244821924582, 8.349702149825146102162236283121, 9.763849160343204480377812055766, 10.65141343664047244023029939050, 11.83481765842467689738267568685

Graph of the $Z$-function along the critical line