Properties

Label 2-250-125.11-c1-0-11
Degree $2$
Conductor $250$
Sign $-0.786 + 0.617i$
Analytic cond. $1.99626$
Root an. cond. $1.41289$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (0.728 − 0.684i)2-s + (−1.52 − 2.40i)3-s + (0.0627 − 0.998i)4-s + (2.07 − 0.831i)5-s + (−2.75 − 0.708i)6-s + (0.278 − 0.858i)7-s + (−0.637 − 0.770i)8-s + (−2.17 + 4.62i)9-s + (0.943 − 2.02i)10-s + (−0.654 + 0.614i)11-s + (−2.49 + 1.37i)12-s + (0.895 − 1.90i)13-s + (−0.384 − 0.816i)14-s + (−5.16 − 3.72i)15-s + (−0.992 − 0.125i)16-s + (0.270 + 4.29i)17-s + ⋯
L(s)  = 1  + (0.515 − 0.484i)2-s + (−0.880 − 1.38i)3-s + (0.0313 − 0.499i)4-s + (0.928 − 0.371i)5-s + (−1.12 − 0.289i)6-s + (0.105 − 0.324i)7-s + (−0.225 − 0.272i)8-s + (−0.725 + 1.54i)9-s + (0.298 − 0.641i)10-s + (−0.197 + 0.185i)11-s + (−0.720 + 0.396i)12-s + (0.248 − 0.527i)13-s + (−0.102 − 0.218i)14-s + (−1.33 − 0.960i)15-s + (−0.248 − 0.0313i)16-s + (0.0655 + 1.04i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 250 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.786 + 0.617i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 250 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.786 + 0.617i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(250\)    =    \(2 \cdot 5^{3}\)
Sign: $-0.786 + 0.617i$
Analytic conductor: \(1.99626\)
Root analytic conductor: \(1.41289\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{250} (11, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 250,\ (\ :1/2),\ -0.786 + 0.617i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.445821 - 1.28957i\)
\(L(\frac12)\) \(\approx\) \(0.445821 - 1.28957i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (-0.728 + 0.684i)T \)
5 \( 1 + (-2.07 + 0.831i)T \)
good3 \( 1 + (1.52 + 2.40i)T + (-1.27 + 2.71i)T^{2} \)
7 \( 1 + (-0.278 + 0.858i)T + (-5.66 - 4.11i)T^{2} \)
11 \( 1 + (0.654 - 0.614i)T + (0.690 - 10.9i)T^{2} \)
13 \( 1 + (-0.895 + 1.90i)T + (-8.28 - 10.0i)T^{2} \)
17 \( 1 + (-0.270 - 4.29i)T + (-16.8 + 2.13i)T^{2} \)
19 \( 1 + (3.27 - 5.16i)T + (-8.08 - 17.1i)T^{2} \)
23 \( 1 + (-1.10 + 5.79i)T + (-21.3 - 8.46i)T^{2} \)
29 \( 1 + (-4.40 - 1.74i)T + (21.1 + 19.8i)T^{2} \)
31 \( 1 + (0.385 + 6.12i)T + (-30.7 + 3.88i)T^{2} \)
37 \( 1 + (-2.61 - 0.329i)T + (35.8 + 9.20i)T^{2} \)
41 \( 1 + (0.0755 + 0.396i)T + (-38.1 + 15.0i)T^{2} \)
43 \( 1 + (-9.59 - 6.97i)T + (13.2 + 40.8i)T^{2} \)
47 \( 1 + (-8.16 + 9.86i)T + (-8.80 - 46.1i)T^{2} \)
53 \( 1 + (3.27 - 0.839i)T + (46.4 - 25.5i)T^{2} \)
59 \( 1 + (6.89 - 3.79i)T + (31.6 - 49.8i)T^{2} \)
61 \( 1 + (1.12 - 5.89i)T + (-56.7 - 22.4i)T^{2} \)
67 \( 1 + (9.03 - 3.57i)T + (48.8 - 45.8i)T^{2} \)
71 \( 1 + (0.216 - 0.262i)T + (-13.3 - 69.7i)T^{2} \)
73 \( 1 + (9.36 + 5.14i)T + (39.1 + 61.6i)T^{2} \)
79 \( 1 + (2.70 + 4.25i)T + (-33.6 + 71.4i)T^{2} \)
83 \( 1 + (-4.17 + 6.58i)T + (-35.3 - 75.1i)T^{2} \)
89 \( 1 + (0.225 + 0.124i)T + (47.6 + 75.1i)T^{2} \)
97 \( 1 + (16.8 + 6.65i)T + (70.7 + 66.4i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.06141362711115672651177735601, −10.73447054417607160924465714931, −10.30344643739941156422843981417, −8.660471916849981422978926219534, −7.52759988867778611165983935286, −6.13160729943751846521024359942, −5.91662747467622577602900594286, −4.45617712975685362277610967268, −2.33122880273691753732738394201, −1.13452609057236685798256003017, 2.88221047150523358945471802747, 4.39493237930208139734169982337, 5.27200812242061387511005048251, 6.03915564935794426781198597413, 7.08927699369965935855865761453, 8.940825412951569671206324713007, 9.526196329942197449605880253240, 10.70793190634032359348022715491, 11.26413663748878736662365495893, 12.32238225560891494826028342001

Graph of the $Z$-function along the critical line