Properties

Label 2-250-125.106-c1-0-6
Degree $2$
Conductor $250$
Sign $0.857 + 0.514i$
Analytic cond. $1.99626$
Root an. cond. $1.41289$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (0.535 − 0.844i)2-s + (−0.224 + 0.210i)3-s + (−0.425 − 0.904i)4-s + (1.43 + 1.71i)5-s + (0.0576 + 0.302i)6-s + (2.26 − 1.64i)7-s + (−0.992 − 0.125i)8-s + (−0.182 + 2.89i)9-s + (2.21 − 0.289i)10-s + (1.56 − 2.47i)11-s + (0.286 + 0.113i)12-s + (−0.0503 + 0.800i)13-s + (−0.175 − 2.79i)14-s + (−0.683 − 0.0833i)15-s + (−0.637 + 0.770i)16-s + (1.59 − 3.38i)17-s + ⋯
L(s)  = 1  + (0.378 − 0.597i)2-s + (−0.129 + 0.121i)3-s + (−0.212 − 0.452i)4-s + (0.640 + 0.767i)5-s + (0.0235 + 0.123i)6-s + (0.856 − 0.622i)7-s + (−0.350 − 0.0443i)8-s + (−0.0608 + 0.966i)9-s + (0.701 − 0.0916i)10-s + (0.472 − 0.745i)11-s + (0.0826 + 0.0327i)12-s + (−0.0139 + 0.221i)13-s + (−0.0470 − 0.747i)14-s + (−0.176 − 0.0215i)15-s + (−0.159 + 0.192i)16-s + (0.386 − 0.820i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 250 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.857 + 0.514i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 250 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.857 + 0.514i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(250\)    =    \(2 \cdot 5^{3}\)
Sign: $0.857 + 0.514i$
Analytic conductor: \(1.99626\)
Root analytic conductor: \(1.41289\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{250} (231, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 250,\ (\ :1/2),\ 0.857 + 0.514i)\)

Particular Values

\(L(1)\) \(\approx\) \(1.59279 - 0.440780i\)
\(L(\frac12)\) \(\approx\) \(1.59279 - 0.440780i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (-0.535 + 0.844i)T \)
5 \( 1 + (-1.43 - 1.71i)T \)
good3 \( 1 + (0.224 - 0.210i)T + (0.188 - 2.99i)T^{2} \)
7 \( 1 + (-2.26 + 1.64i)T + (2.16 - 6.65i)T^{2} \)
11 \( 1 + (-1.56 + 2.47i)T + (-4.68 - 9.95i)T^{2} \)
13 \( 1 + (0.0503 - 0.800i)T + (-12.8 - 1.62i)T^{2} \)
17 \( 1 + (-1.59 + 3.38i)T + (-10.8 - 13.0i)T^{2} \)
19 \( 1 + (1.03 + 0.973i)T + (1.19 + 18.9i)T^{2} \)
23 \( 1 + (-1.09 - 0.279i)T + (20.1 + 11.0i)T^{2} \)
29 \( 1 + (5.84 + 3.21i)T + (15.5 + 24.4i)T^{2} \)
31 \( 1 + (1.41 - 3.00i)T + (-19.7 - 23.8i)T^{2} \)
37 \( 1 + (0.611 - 0.739i)T + (-6.93 - 36.3i)T^{2} \)
41 \( 1 + (9.81 - 2.51i)T + (35.9 - 19.7i)T^{2} \)
43 \( 1 + (2.17 - 6.69i)T + (-34.7 - 25.2i)T^{2} \)
47 \( 1 + (-0.00133 + 0.000169i)T + (45.5 - 11.6i)T^{2} \)
53 \( 1 + (0.0865 - 0.453i)T + (-49.2 - 19.5i)T^{2} \)
59 \( 1 + (-2.38 - 0.942i)T + (43.0 + 40.3i)T^{2} \)
61 \( 1 + (8.85 + 2.27i)T + (53.4 + 29.3i)T^{2} \)
67 \( 1 + (-13.7 + 7.56i)T + (35.9 - 56.5i)T^{2} \)
71 \( 1 + (7.19 - 0.908i)T + (68.7 - 17.6i)T^{2} \)
73 \( 1 + (-6.61 + 2.61i)T + (53.2 - 49.9i)T^{2} \)
79 \( 1 + (-0.880 + 0.827i)T + (4.96 - 78.8i)T^{2} \)
83 \( 1 + (8.57 + 8.05i)T + (5.21 + 82.8i)T^{2} \)
89 \( 1 + (12.7 - 5.06i)T + (64.8 - 60.9i)T^{2} \)
97 \( 1 + (-3.88 - 2.13i)T + (51.9 + 81.8i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.56495057776503697472324818000, −11.13502037994903082040846471658, −10.35514925303828664888860814744, −9.379030993367521617813435996227, −8.035650965159655880544700257780, −6.89550702948546037789830644663, −5.62923393138830022327867952016, −4.64430493143997512428602689716, −3.20249935050435266454586863130, −1.75639606881556609430205498316, 1.77422490944436388862547003588, 3.86477203132389225146019522619, 5.14108458743105835846528557749, 5.88873503961013960992441174378, 7.01505114755636065885677581283, 8.334484218082638723524367491912, 9.016296929184226101429609669675, 10.02362448855146131460407981805, 11.53061210119202131789310469348, 12.37986893109297298879568308690

Graph of the $Z$-function along the critical line