Properties

Label 2-250-125.104-c1-0-10
Degree $2$
Conductor $250$
Sign $0.492 + 0.870i$
Analytic cond. $1.99626$
Root an. cond. $1.41289$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.248 − 0.968i)2-s + (2.88 − 0.550i)3-s + (−0.876 + 0.481i)4-s + (2.01 − 0.968i)5-s + (−1.25 − 2.66i)6-s + (−0.797 + 1.09i)7-s + (0.684 + 0.728i)8-s + (5.24 − 2.07i)9-s + (−1.43 − 1.71i)10-s + (−5.82 + 1.49i)11-s + (−2.26 + 1.87i)12-s + (0.617 + 1.55i)13-s + (1.26 + 0.499i)14-s + (5.28 − 3.90i)15-s + (0.535 − 0.844i)16-s + (−1.13 + 2.06i)17-s + ⋯
L(s)  = 1  + (−0.175 − 0.684i)2-s + (1.66 − 0.318i)3-s + (−0.438 + 0.240i)4-s + (0.901 − 0.433i)5-s + (−0.511 − 1.08i)6-s + (−0.301 + 0.415i)7-s + (0.242 + 0.257i)8-s + (1.74 − 0.692i)9-s + (−0.455 − 0.541i)10-s + (−1.75 + 0.450i)11-s + (−0.653 + 0.540i)12-s + (0.171 + 0.432i)13-s + (0.337 + 0.133i)14-s + (1.36 − 1.00i)15-s + (0.133 − 0.211i)16-s + (−0.275 + 0.500i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 250 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.492 + 0.870i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 250 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.492 + 0.870i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(250\)    =    \(2 \cdot 5^{3}\)
Sign: $0.492 + 0.870i$
Analytic conductor: \(1.99626\)
Root analytic conductor: \(1.41289\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{250} (229, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 250,\ (\ :1/2),\ 0.492 + 0.870i)\)

Particular Values

\(L(1)\) \(\approx\) \(1.61707 - 0.943299i\)
\(L(\frac12)\) \(\approx\) \(1.61707 - 0.943299i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (0.248 + 0.968i)T \)
5 \( 1 + (-2.01 + 0.968i)T \)
good3 \( 1 + (-2.88 + 0.550i)T + (2.78 - 1.10i)T^{2} \)
7 \( 1 + (0.797 - 1.09i)T + (-2.16 - 6.65i)T^{2} \)
11 \( 1 + (5.82 - 1.49i)T + (9.63 - 5.29i)T^{2} \)
13 \( 1 + (-0.617 - 1.55i)T + (-9.47 + 8.89i)T^{2} \)
17 \( 1 + (1.13 - 2.06i)T + (-9.10 - 14.3i)T^{2} \)
19 \( 1 + (-0.142 + 0.746i)T + (-17.6 - 6.99i)T^{2} \)
23 \( 1 + (7.59 + 0.477i)T + (22.8 + 2.88i)T^{2} \)
29 \( 1 + (-3.73 - 0.471i)T + (28.0 + 7.21i)T^{2} \)
31 \( 1 + (1.31 + 0.724i)T + (16.6 + 26.1i)T^{2} \)
37 \( 1 + (5.99 + 3.80i)T + (15.7 + 33.4i)T^{2} \)
41 \( 1 + (0.446 + 7.10i)T + (-40.6 + 5.13i)T^{2} \)
43 \( 1 + (-11.3 + 3.67i)T + (34.7 - 25.2i)T^{2} \)
47 \( 1 + (-1.23 + 1.31i)T + (-2.95 - 46.9i)T^{2} \)
53 \( 1 + (2.74 + 1.29i)T + (33.7 + 40.8i)T^{2} \)
59 \( 1 + (-2.82 - 3.41i)T + (-11.0 + 57.9i)T^{2} \)
61 \( 1 + (0.860 - 13.6i)T + (-60.5 - 7.64i)T^{2} \)
67 \( 1 + (-0.0237 - 0.188i)T + (-64.8 + 16.6i)T^{2} \)
71 \( 1 + (-0.464 - 0.436i)T + (4.45 + 70.8i)T^{2} \)
73 \( 1 + (-9.25 - 7.65i)T + (13.6 + 71.7i)T^{2} \)
79 \( 1 + (-2.59 - 13.6i)T + (-73.4 + 29.0i)T^{2} \)
83 \( 1 + (6.68 + 1.27i)T + (77.1 + 30.5i)T^{2} \)
89 \( 1 + (-9.38 + 11.3i)T + (-16.6 - 87.4i)T^{2} \)
97 \( 1 + (-1.37 + 10.8i)T + (-93.9 - 24.1i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.40878654554105904913241841928, −10.54018543859848288013260365923, −9.880832101332188390541983384596, −8.956199226386491558590944018723, −8.358543707537450359713833442782, −7.30998665028010817301272958951, −5.65543997649065175593632627546, −4.14001229267512148067366771889, −2.62048776863414381619348401042, −2.03086593462148838856261944652, 2.37492660933537119379858596062, 3.42836322237772678527381156933, 5.01449975130913169444029929822, 6.31342823181885027068889356312, 7.64754877913998272903387002684, 8.166336275565962316141144621234, 9.287046912288174338871199652369, 10.07086651597167844494383331343, 10.64183114258539812830667344100, 12.80371018939981534475681956761

Graph of the $Z$-function along the critical line