Properties

Label 2-24e2-12.11-c1-0-7
Degree $2$
Conductor $576$
Sign $-0.816 + 0.577i$
Analytic cond. $4.59938$
Root an. cond. $2.14461$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 1.41i·5-s − 4i·7-s − 5.65·11-s − 4·13-s + 4.24i·17-s − 5.65·23-s + 2.99·25-s + 1.41i·29-s − 4i·31-s − 5.65·35-s + 6·37-s − 9.89i·41-s − 8i·43-s − 5.65·47-s − 9·49-s + ⋯
L(s)  = 1  − 0.632i·5-s − 1.51i·7-s − 1.70·11-s − 1.10·13-s + 1.02i·17-s − 1.17·23-s + 0.599·25-s + 0.262i·29-s − 0.718i·31-s − 0.956·35-s + 0.986·37-s − 1.54i·41-s − 1.21i·43-s − 0.825·47-s − 1.28·49-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 576 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.816 + 0.577i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 576 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.816 + 0.577i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(576\)    =    \(2^{6} \cdot 3^{2}\)
Sign: $-0.816 + 0.577i$
Analytic conductor: \(4.59938\)
Root analytic conductor: \(2.14461\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{576} (575, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 576,\ (\ :1/2),\ -0.816 + 0.577i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.229202 - 0.721131i\)
\(L(\frac12)\) \(\approx\) \(0.229202 - 0.721131i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
good5 \( 1 + 1.41iT - 5T^{2} \)
7 \( 1 + 4iT - 7T^{2} \)
11 \( 1 + 5.65T + 11T^{2} \)
13 \( 1 + 4T + 13T^{2} \)
17 \( 1 - 4.24iT - 17T^{2} \)
19 \( 1 - 19T^{2} \)
23 \( 1 + 5.65T + 23T^{2} \)
29 \( 1 - 1.41iT - 29T^{2} \)
31 \( 1 + 4iT - 31T^{2} \)
37 \( 1 - 6T + 37T^{2} \)
41 \( 1 + 9.89iT - 41T^{2} \)
43 \( 1 + 8iT - 43T^{2} \)
47 \( 1 + 5.65T + 47T^{2} \)
53 \( 1 + 4.24iT - 53T^{2} \)
59 \( 1 - 11.3T + 59T^{2} \)
61 \( 1 - 2T + 61T^{2} \)
67 \( 1 + 8iT - 67T^{2} \)
71 \( 1 - 5.65T + 71T^{2} \)
73 \( 1 + 73T^{2} \)
79 \( 1 - 4iT - 79T^{2} \)
83 \( 1 - 5.65T + 83T^{2} \)
89 \( 1 + 4.24iT - 89T^{2} \)
97 \( 1 + 8T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.32360937725205930273853100162, −9.776610372636196852004421041476, −8.380263130328563341616889716055, −7.75379788807592481996354273366, −6.96603639246896978904741026584, −5.59283793293401047972675320564, −4.70885502241919532450136180327, −3.76218282389824909556386566466, −2.20165118443037188677233009361, −0.39560713202295222952378087818, 2.47865409445110051051012942284, 2.83355167419338710386771526045, 4.80126549567677412640917389036, 5.47682241251627425783245967948, 6.52109639569291087815479229536, 7.64447280433074367089497536340, 8.301592137560275702336947977761, 9.509092865350021842439451809237, 10.07033225462411733337044380435, 11.13485778523077898451014663513

Graph of the $Z$-function along the critical line