L(s) = 1 | + 2-s + 3-s + 4-s + 5-s + 6-s + 7-s + 8-s + 9-s + 10-s − 4·11-s + 12-s − 2·13-s + 14-s + 15-s + 16-s + 2·17-s + 18-s + 4·19-s + 20-s + 21-s − 4·22-s + 8·23-s + 24-s + 25-s − 2·26-s + 27-s + 28-s + ⋯ |
L(s) = 1 | + 0.707·2-s + 0.577·3-s + 1/2·4-s + 0.447·5-s + 0.408·6-s + 0.377·7-s + 0.353·8-s + 1/3·9-s + 0.316·10-s − 1.20·11-s + 0.288·12-s − 0.554·13-s + 0.267·14-s + 0.258·15-s + 1/4·16-s + 0.485·17-s + 0.235·18-s + 0.917·19-s + 0.223·20-s + 0.218·21-s − 0.852·22-s + 1.66·23-s + 0.204·24-s + 1/5·25-s − 0.392·26-s + 0.192·27-s + 0.188·28-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 249690 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 249690 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 - T \) |
| 3 | \( 1 - T \) |
| 5 | \( 1 - T \) |
| 7 | \( 1 - T \) |
| 29 | \( 1 - T \) |
| 41 | \( 1 - T \) |
good | 11 | \( 1 + 4 T + p T^{2} \) |
| 13 | \( 1 + 2 T + p T^{2} \) |
| 17 | \( 1 - 2 T + p T^{2} \) |
| 19 | \( 1 - 4 T + p T^{2} \) |
| 23 | \( 1 - 8 T + p T^{2} \) |
| 31 | \( 1 + p T^{2} \) |
| 37 | \( 1 - 6 T + p T^{2} \) |
| 43 | \( 1 + 4 T + p T^{2} \) |
| 47 | \( 1 + p T^{2} \) |
| 53 | \( 1 - 6 T + p T^{2} \) |
| 59 | \( 1 + 4 T + p T^{2} \) |
| 61 | \( 1 + 2 T + p T^{2} \) |
| 67 | \( 1 + 12 T + p T^{2} \) |
| 71 | \( 1 + 8 T + p T^{2} \) |
| 73 | \( 1 - 10 T + p T^{2} \) |
| 79 | \( 1 + 16 T + p T^{2} \) |
| 83 | \( 1 + 12 T + p T^{2} \) |
| 89 | \( 1 + 6 T + p T^{2} \) |
| 97 | \( 1 - 2 T + p T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−13.13639448361112, −12.80474315059502, −12.25477395772213, −11.80426560811348, −11.23496002587705, −10.80824067972697, −10.33211767425462, −9.830642506559774, −9.506691795474031, −8.794285663620364, −8.436668459041383, −7.716811917325564, −7.453671751230429, −7.081527114419158, −6.390720201957589, −5.767379223862129, −5.274248681141707, −5.001558014794440, −4.454897081427510, −3.832012260436157, −3.027693629449370, −2.792733427791996, −2.425142527118976, −1.448035312826937, −1.150179592806201, 0,
1.150179592806201, 1.448035312826937, 2.425142527118976, 2.792733427791996, 3.027693629449370, 3.832012260436157, 4.454897081427510, 5.001558014794440, 5.274248681141707, 5.767379223862129, 6.390720201957589, 7.081527114419158, 7.453671751230429, 7.716811917325564, 8.436668459041383, 8.794285663620364, 9.506691795474031, 9.830642506559774, 10.33211767425462, 10.80824067972697, 11.23496002587705, 11.80426560811348, 12.25477395772213, 12.80474315059502, 13.13639448361112