| L(s) = 1 | + (0.881 − 0.471i)2-s + (0.831 − 0.555i)3-s + (0.555 − 0.831i)4-s + (0.924 − 0.183i)5-s + (0.471 − 0.881i)6-s + (0.0980 − 0.995i)8-s + (0.382 − 0.923i)9-s + (0.728 − 0.598i)10-s + (−1.10 + 1.65i)11-s − i·12-s + (−0.980 − 0.195i)13-s + (0.666 − 0.666i)15-s + (−0.382 − 0.923i)16-s + (−0.0980 − 0.995i)18-s + (0.360 − 0.871i)20-s + ⋯ |
| L(s) = 1 | + (0.881 − 0.471i)2-s + (0.831 − 0.555i)3-s + (0.555 − 0.831i)4-s + (0.924 − 0.183i)5-s + (0.471 − 0.881i)6-s + (0.0980 − 0.995i)8-s + (0.382 − 0.923i)9-s + (0.728 − 0.598i)10-s + (−1.10 + 1.65i)11-s − i·12-s + (−0.980 − 0.195i)13-s + (0.666 − 0.666i)15-s + (−0.382 − 0.923i)16-s + (−0.0980 − 0.995i)18-s + (0.360 − 0.871i)20-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2496 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.0980 + 0.995i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2496 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.0980 + 0.995i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(\frac{1}{2})\) |
\(\approx\) |
\(2.836904591\) |
| \(L(\frac12)\) |
\(\approx\) |
\(2.836904591\) |
| \(L(1)\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 + (-0.881 + 0.471i)T \) |
| 3 | \( 1 + (-0.831 + 0.555i)T \) |
| 13 | \( 1 + (0.980 + 0.195i)T \) |
| good | 5 | \( 1 + (-0.924 + 0.183i)T + (0.923 - 0.382i)T^{2} \) |
| 7 | \( 1 + (0.707 - 0.707i)T^{2} \) |
| 11 | \( 1 + (1.10 - 1.65i)T + (-0.382 - 0.923i)T^{2} \) |
| 17 | \( 1 - iT^{2} \) |
| 19 | \( 1 + (0.923 + 0.382i)T^{2} \) |
| 23 | \( 1 + (-0.707 - 0.707i)T^{2} \) |
| 29 | \( 1 + (0.382 - 0.923i)T^{2} \) |
| 31 | \( 1 + T^{2} \) |
| 37 | \( 1 + (0.923 - 0.382i)T^{2} \) |
| 41 | \( 1 + (-1.76 - 0.732i)T + (0.707 + 0.707i)T^{2} \) |
| 43 | \( 1 + (-0.324 - 0.216i)T + (0.382 + 0.923i)T^{2} \) |
| 47 | \( 1 + (-0.897 - 0.897i)T + iT^{2} \) |
| 53 | \( 1 + (0.382 + 0.923i)T^{2} \) |
| 59 | \( 1 + (1.72 - 0.344i)T + (0.923 - 0.382i)T^{2} \) |
| 61 | \( 1 + (-1.53 + 1.02i)T + (0.382 - 0.923i)T^{2} \) |
| 67 | \( 1 + (-0.382 + 0.923i)T^{2} \) |
| 71 | \( 1 + (-0.0750 - 0.181i)T + (-0.707 + 0.707i)T^{2} \) |
| 73 | \( 1 + (0.707 + 0.707i)T^{2} \) |
| 79 | \( 1 + (-0.275 + 0.275i)T - iT^{2} \) |
| 83 | \( 1 + (0.113 - 0.569i)T + (-0.923 - 0.382i)T^{2} \) |
| 89 | \( 1 + (1.17 - 0.485i)T + (0.707 - 0.707i)T^{2} \) |
| 97 | \( 1 + T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.366213229180268347719521417692, −7.85321874528783389545606106028, −7.43361964887510821351273127332, −6.57100063116513807430328968996, −5.70631297703911253052112799292, −4.87984719461400887644674178058, −4.17648639831692945317034479657, −2.76131826528097999197817943392, −2.39028433000316999258663863432, −1.49444692482539944944917978613,
2.20676227434704902699922975601, 2.73647488053278157276499645744, 3.59787969590759856844601464068, 4.57761379504892394587953807085, 5.49451053431250100948087279510, 5.84584764227666080370544944247, 7.00653815216855521289194732844, 7.75691668979008978969870931544, 8.424153294801156431856624951688, 9.147521416984292032895360591947