Properties

Label 2-2496-1.1-c3-0-64
Degree $2$
Conductor $2496$
Sign $1$
Analytic cond. $147.268$
Root an. cond. $12.1354$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3·3-s + 13.1·5-s + 15.6·7-s + 9·9-s + 55.7·11-s − 13·13-s − 39.3·15-s + 23.4·17-s + 25.6·19-s − 46.8·21-s − 189.·23-s + 47.2·25-s − 27·27-s + 236.·29-s + 47.0·31-s − 167.·33-s + 204.·35-s + 154.·37-s + 39·39-s − 34.6·41-s + 398.·43-s + 118.·45-s + 582.·47-s − 99.1·49-s − 70.4·51-s + 361.·53-s + 731.·55-s + ⋯
L(s)  = 1  − 0.577·3-s + 1.17·5-s + 0.843·7-s + 0.333·9-s + 1.52·11-s − 0.277·13-s − 0.677·15-s + 0.334·17-s + 0.309·19-s − 0.486·21-s − 1.71·23-s + 0.377·25-s − 0.192·27-s + 1.51·29-s + 0.272·31-s − 0.881·33-s + 0.989·35-s + 0.687·37-s + 0.160·39-s − 0.132·41-s + 1.41·43-s + 0.391·45-s + 1.80·47-s − 0.289·49-s − 0.193·51-s + 0.935·53-s + 1.79·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2496 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2496 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2496\)    =    \(2^{6} \cdot 3 \cdot 13\)
Sign: $1$
Analytic conductor: \(147.268\)
Root analytic conductor: \(12.1354\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 2496,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(3.262893889\)
\(L(\frac12)\) \(\approx\) \(3.262893889\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 + 3T \)
13 \( 1 + 13T \)
good5 \( 1 - 13.1T + 125T^{2} \)
7 \( 1 - 15.6T + 343T^{2} \)
11 \( 1 - 55.7T + 1.33e3T^{2} \)
17 \( 1 - 23.4T + 4.91e3T^{2} \)
19 \( 1 - 25.6T + 6.85e3T^{2} \)
23 \( 1 + 189.T + 1.21e4T^{2} \)
29 \( 1 - 236.T + 2.43e4T^{2} \)
31 \( 1 - 47.0T + 2.97e4T^{2} \)
37 \( 1 - 154.T + 5.06e4T^{2} \)
41 \( 1 + 34.6T + 6.89e4T^{2} \)
43 \( 1 - 398.T + 7.95e4T^{2} \)
47 \( 1 - 582.T + 1.03e5T^{2} \)
53 \( 1 - 361.T + 1.48e5T^{2} \)
59 \( 1 + 396.T + 2.05e5T^{2} \)
61 \( 1 - 211.T + 2.26e5T^{2} \)
67 \( 1 + 85.8T + 3.00e5T^{2} \)
71 \( 1 + 651.T + 3.57e5T^{2} \)
73 \( 1 - 927.T + 3.89e5T^{2} \)
79 \( 1 + 1.11e3T + 4.93e5T^{2} \)
83 \( 1 + 391.T + 5.71e5T^{2} \)
89 \( 1 + 745.T + 7.04e5T^{2} \)
97 \( 1 + 173.T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.663040339537159996800988353922, −7.77389835717044415361569491672, −6.88645624154527224327976326832, −6.04468920200788309190695031104, −5.70595912021884655323917946443, −4.61273054487641761704473496898, −3.99933366716651493691274307760, −2.53772379526104580160829602345, −1.62939953893538085647119128250, −0.893979176437509802330674656599, 0.893979176437509802330674656599, 1.62939953893538085647119128250, 2.53772379526104580160829602345, 3.99933366716651493691274307760, 4.61273054487641761704473496898, 5.70595912021884655323917946443, 6.04468920200788309190695031104, 6.88645624154527224327976326832, 7.77389835717044415361569491672, 8.663040339537159996800988353922

Graph of the $Z$-function along the critical line