L(s) = 1 | − 3·3-s + 13.1·5-s + 15.6·7-s + 9·9-s + 55.7·11-s − 13·13-s − 39.3·15-s + 23.4·17-s + 25.6·19-s − 46.8·21-s − 189.·23-s + 47.2·25-s − 27·27-s + 236.·29-s + 47.0·31-s − 167.·33-s + 204.·35-s + 154.·37-s + 39·39-s − 34.6·41-s + 398.·43-s + 118.·45-s + 582.·47-s − 99.1·49-s − 70.4·51-s + 361.·53-s + 731.·55-s + ⋯ |
L(s) = 1 | − 0.577·3-s + 1.17·5-s + 0.843·7-s + 0.333·9-s + 1.52·11-s − 0.277·13-s − 0.677·15-s + 0.334·17-s + 0.309·19-s − 0.486·21-s − 1.71·23-s + 0.377·25-s − 0.192·27-s + 1.51·29-s + 0.272·31-s − 0.881·33-s + 0.989·35-s + 0.687·37-s + 0.160·39-s − 0.132·41-s + 1.41·43-s + 0.391·45-s + 1.80·47-s − 0.289·49-s − 0.193·51-s + 0.935·53-s + 1.79·55-s + ⋯ |
Λ(s)=(=(2496s/2ΓC(s)L(s)Λ(4−s)
Λ(s)=(=(2496s/2ΓC(s+3/2)L(s)Λ(1−s)
Particular Values
L(2) |
≈ |
3.262893889 |
L(21) |
≈ |
3.262893889 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1+3T |
| 13 | 1+13T |
good | 5 | 1−13.1T+125T2 |
| 7 | 1−15.6T+343T2 |
| 11 | 1−55.7T+1.33e3T2 |
| 17 | 1−23.4T+4.91e3T2 |
| 19 | 1−25.6T+6.85e3T2 |
| 23 | 1+189.T+1.21e4T2 |
| 29 | 1−236.T+2.43e4T2 |
| 31 | 1−47.0T+2.97e4T2 |
| 37 | 1−154.T+5.06e4T2 |
| 41 | 1+34.6T+6.89e4T2 |
| 43 | 1−398.T+7.95e4T2 |
| 47 | 1−582.T+1.03e5T2 |
| 53 | 1−361.T+1.48e5T2 |
| 59 | 1+396.T+2.05e5T2 |
| 61 | 1−211.T+2.26e5T2 |
| 67 | 1+85.8T+3.00e5T2 |
| 71 | 1+651.T+3.57e5T2 |
| 73 | 1−927.T+3.89e5T2 |
| 79 | 1+1.11e3T+4.93e5T2 |
| 83 | 1+391.T+5.71e5T2 |
| 89 | 1+745.T+7.04e5T2 |
| 97 | 1+173.T+9.12e5T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.663040339537159996800988353922, −7.77389835717044415361569491672, −6.88645624154527224327976326832, −6.04468920200788309190695031104, −5.70595912021884655323917946443, −4.61273054487641761704473496898, −3.99933366716651493691274307760, −2.53772379526104580160829602345, −1.62939953893538085647119128250, −0.893979176437509802330674656599,
0.893979176437509802330674656599, 1.62939953893538085647119128250, 2.53772379526104580160829602345, 3.99933366716651493691274307760, 4.61273054487641761704473496898, 5.70595912021884655323917946443, 6.04468920200788309190695031104, 6.88645624154527224327976326832, 7.77389835717044415361569491672, 8.663040339537159996800988353922