L(s) = 1 | − 3·3-s − 1.46·5-s + 8.39·7-s + 9·9-s + 34.7·11-s + 13·13-s + 4.39·15-s − 108.·17-s + 143.·19-s − 25.1·21-s + 128.·23-s − 122.·25-s − 27·27-s + 18.8·29-s + 78.5·31-s − 104.·33-s − 12.2·35-s + 327.·37-s − 39·39-s + 327.·41-s − 336.·43-s − 13.1·45-s − 99.2·47-s − 272.·49-s + 324.·51-s + 686.·53-s − 50.9·55-s + ⋯ |
L(s) = 1 | − 0.577·3-s − 0.130·5-s + 0.453·7-s + 0.333·9-s + 0.953·11-s + 0.277·13-s + 0.0756·15-s − 1.54·17-s + 1.72·19-s − 0.261·21-s + 1.16·23-s − 0.982·25-s − 0.192·27-s + 0.120·29-s + 0.455·31-s − 0.550·33-s − 0.0593·35-s + 1.45·37-s − 0.160·39-s + 1.24·41-s − 1.19·43-s − 0.0436·45-s − 0.308·47-s − 0.794·49-s + 0.890·51-s + 1.77·53-s − 0.124·55-s + ⋯ |
Λ(s)=(=(2496s/2ΓC(s)L(s)Λ(4−s)
Λ(s)=(=(2496s/2ΓC(s+3/2)L(s)Λ(1−s)
Particular Values
L(2) |
≈ |
2.109811203 |
L(21) |
≈ |
2.109811203 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1+3T |
| 13 | 1−13T |
good | 5 | 1+1.46T+125T2 |
| 7 | 1−8.39T+343T2 |
| 11 | 1−34.7T+1.33e3T2 |
| 17 | 1+108.T+4.91e3T2 |
| 19 | 1−143.T+6.85e3T2 |
| 23 | 1−128.T+1.21e4T2 |
| 29 | 1−18.8T+2.43e4T2 |
| 31 | 1−78.5T+2.97e4T2 |
| 37 | 1−327.T+5.06e4T2 |
| 41 | 1−327.T+6.89e4T2 |
| 43 | 1+336.T+7.95e4T2 |
| 47 | 1+99.2T+1.03e5T2 |
| 53 | 1−686.T+1.48e5T2 |
| 59 | 1+242.T+2.05e5T2 |
| 61 | 1−644.T+2.26e5T2 |
| 67 | 1+871.T+3.00e5T2 |
| 71 | 1+100.T+3.57e5T2 |
| 73 | 1−604.T+3.89e5T2 |
| 79 | 1+1.07e3T+4.93e5T2 |
| 83 | 1−741.T+5.71e5T2 |
| 89 | 1+501.T+7.04e5T2 |
| 97 | 1+1.56e3T+9.12e5T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.639134782559222820705833742138, −7.70914663507645320890912779024, −6.97813181518322587517449558663, −6.29379436037329359840412513949, −5.44435872815901686370455578666, −4.60547752360649103893513416751, −3.92425760569416123010242257170, −2.78466172469384241970553352331, −1.55136222901196661982519524271, −0.70686582964195287517465519461,
0.70686582964195287517465519461, 1.55136222901196661982519524271, 2.78466172469384241970553352331, 3.92425760569416123010242257170, 4.60547752360649103893513416751, 5.44435872815901686370455578666, 6.29379436037329359840412513949, 6.97813181518322587517449558663, 7.70914663507645320890912779024, 8.639134782559222820705833742138