L(s) = 1 | + 3·3-s − 12.8·5-s + 24.8·7-s + 9·9-s − 19.6·11-s + 13·13-s − 38.4·15-s − 63.6·17-s + 0.832·19-s + 74.4·21-s + 119.·23-s + 39.6·25-s + 27·27-s + 6·29-s + 185.·31-s − 58.9·33-s − 318.·35-s − 143.·37-s + 39·39-s − 117.·41-s − 67.6·43-s − 115.·45-s + 476.·47-s + 273.·49-s − 190.·51-s − 59.3·53-s + 252.·55-s + ⋯ |
L(s) = 1 | + 0.577·3-s − 1.14·5-s + 1.34·7-s + 0.333·9-s − 0.539·11-s + 0.277·13-s − 0.662·15-s − 0.908·17-s + 0.0100·19-s + 0.774·21-s + 1.08·23-s + 0.317·25-s + 0.192·27-s + 0.0384·29-s + 1.07·31-s − 0.311·33-s − 1.53·35-s − 0.638·37-s + 0.160·39-s − 0.446·41-s − 0.240·43-s − 0.382·45-s + 1.47·47-s + 0.797·49-s − 0.524·51-s − 0.153·53-s + 0.618·55-s + ⋯ |
Λ(s)=(=(2496s/2ΓC(s)L(s)Λ(4−s)
Λ(s)=(=(2496s/2ΓC(s+3/2)L(s)Λ(1−s)
Particular Values
L(2) |
≈ |
2.446730249 |
L(21) |
≈ |
2.446730249 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1−3T |
| 13 | 1−13T |
good | 5 | 1+12.8T+125T2 |
| 7 | 1−24.8T+343T2 |
| 11 | 1+19.6T+1.33e3T2 |
| 17 | 1+63.6T+4.91e3T2 |
| 19 | 1−0.832T+6.85e3T2 |
| 23 | 1−119.T+1.21e4T2 |
| 29 | 1−6T+2.43e4T2 |
| 31 | 1−185.T+2.97e4T2 |
| 37 | 1+143.T+5.06e4T2 |
| 41 | 1+117.T+6.89e4T2 |
| 43 | 1+67.6T+7.95e4T2 |
| 47 | 1−476.T+1.03e5T2 |
| 53 | 1+59.3T+1.48e5T2 |
| 59 | 1+78T+2.05e5T2 |
| 61 | 1+609.T+2.26e5T2 |
| 67 | 1−654.T+3.00e5T2 |
| 71 | 1+390.T+3.57e5T2 |
| 73 | 1+84.3T+3.89e5T2 |
| 79 | 1−1.17e3T+4.93e5T2 |
| 83 | 1−430.T+5.71e5T2 |
| 89 | 1+1.34e3T+7.04e5T2 |
| 97 | 1−802.T+9.12e5T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.580246664667339829285116039000, −7.78734772325405880652713571009, −7.40208562310227222594430794238, −6.41541411065145478510039068912, −5.11573464981310914896124032192, −4.58776790855531601925819629576, −3.79069705725521768611067178115, −2.81809388124341308765377314636, −1.81569171989624458601438818509, −0.67560082620932839629182886096,
0.67560082620932839629182886096, 1.81569171989624458601438818509, 2.81809388124341308765377314636, 3.79069705725521768611067178115, 4.58776790855531601925819629576, 5.11573464981310914896124032192, 6.41541411065145478510039068912, 7.40208562310227222594430794238, 7.78734772325405880652713571009, 8.580246664667339829285116039000