L(s) = 1 | − 3·3-s + 7.11·5-s + 8.88·7-s + 9·9-s − 26·11-s + 13·13-s − 21.3·15-s + 16.2·17-s − 35.5·19-s − 26.6·21-s + 153.·23-s − 74.3·25-s − 27·27-s − 223.·29-s + 126.·31-s + 78·33-s + 63.2·35-s − 217.·37-s − 39·39-s + 105.·41-s + 183.·43-s + 64.0·45-s + 96.6·47-s − 264.·49-s − 48.6·51-s − 386.·53-s − 184.·55-s + ⋯ |
L(s) = 1 | − 0.577·3-s + 0.636·5-s + 0.479·7-s + 0.333·9-s − 0.712·11-s + 0.277·13-s − 0.367·15-s + 0.231·17-s − 0.429·19-s − 0.276·21-s + 1.39·23-s − 0.595·25-s − 0.192·27-s − 1.43·29-s + 0.734·31-s + 0.411·33-s + 0.305·35-s − 0.966·37-s − 0.160·39-s + 0.403·41-s + 0.651·43-s + 0.212·45-s + 0.300·47-s − 0.769·49-s − 0.133·51-s − 1.00·53-s − 0.453·55-s + ⋯ |
Λ(s)=(=(2496s/2ΓC(s)L(s)−Λ(4−s)
Λ(s)=(=(2496s/2ΓC(s+3/2)L(s)−Λ(1−s)
Particular Values
L(2) |
= |
0 |
L(21) |
= |
0 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1+3T |
| 13 | 1−13T |
good | 5 | 1−7.11T+125T2 |
| 7 | 1−8.88T+343T2 |
| 11 | 1+26T+1.33e3T2 |
| 17 | 1−16.2T+4.91e3T2 |
| 19 | 1+35.5T+6.85e3T2 |
| 23 | 1−153.T+1.21e4T2 |
| 29 | 1+223.T+2.43e4T2 |
| 31 | 1−126.T+2.97e4T2 |
| 37 | 1+217.T+5.06e4T2 |
| 41 | 1−105.T+6.89e4T2 |
| 43 | 1−183.T+7.95e4T2 |
| 47 | 1−96.6T+1.03e5T2 |
| 53 | 1+386.T+1.48e5T2 |
| 59 | 1+34.5T+2.05e5T2 |
| 61 | 1+274.T+2.26e5T2 |
| 67 | 1+93.9T+3.00e5T2 |
| 71 | 1+741.T+3.57e5T2 |
| 73 | 1−640.T+3.89e5T2 |
| 79 | 1+182.T+4.93e5T2 |
| 83 | 1−288.T+5.71e5T2 |
| 89 | 1−963.T+7.04e5T2 |
| 97 | 1+481.T+9.12e5T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.105393538583679537911402683128, −7.42906955836058059761279398717, −6.55110092600893619815788059161, −5.74820733241354185680904445960, −5.18667476648359443372132212885, −4.36969221592711796752941596261, −3.23061536413008528649680397516, −2.13841746579484245052465215851, −1.24811313124139847134225459235, 0,
1.24811313124139847134225459235, 2.13841746579484245052465215851, 3.23061536413008528649680397516, 4.36969221592711796752941596261, 5.18667476648359443372132212885, 5.74820733241354185680904445960, 6.55110092600893619815788059161, 7.42906955836058059761279398717, 8.105393538583679537911402683128