Properties

Label 2-2496-1.1-c3-0-104
Degree $2$
Conductor $2496$
Sign $-1$
Analytic cond. $147.268$
Root an. cond. $12.1354$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3·3-s + 7.11·5-s + 8.88·7-s + 9·9-s − 26·11-s + 13·13-s − 21.3·15-s + 16.2·17-s − 35.5·19-s − 26.6·21-s + 153.·23-s − 74.3·25-s − 27·27-s − 223.·29-s + 126.·31-s + 78·33-s + 63.2·35-s − 217.·37-s − 39·39-s + 105.·41-s + 183.·43-s + 64.0·45-s + 96.6·47-s − 264.·49-s − 48.6·51-s − 386.·53-s − 184.·55-s + ⋯
L(s)  = 1  − 0.577·3-s + 0.636·5-s + 0.479·7-s + 0.333·9-s − 0.712·11-s + 0.277·13-s − 0.367·15-s + 0.231·17-s − 0.429·19-s − 0.276·21-s + 1.39·23-s − 0.595·25-s − 0.192·27-s − 1.43·29-s + 0.734·31-s + 0.411·33-s + 0.305·35-s − 0.966·37-s − 0.160·39-s + 0.403·41-s + 0.651·43-s + 0.212·45-s + 0.300·47-s − 0.769·49-s − 0.133·51-s − 1.00·53-s − 0.453·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2496 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2496 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2496\)    =    \(2^{6} \cdot 3 \cdot 13\)
Sign: $-1$
Analytic conductor: \(147.268\)
Root analytic conductor: \(12.1354\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 2496,\ (\ :3/2),\ -1)\)

Particular Values

\(L(2)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 + 3T \)
13 \( 1 - 13T \)
good5 \( 1 - 7.11T + 125T^{2} \)
7 \( 1 - 8.88T + 343T^{2} \)
11 \( 1 + 26T + 1.33e3T^{2} \)
17 \( 1 - 16.2T + 4.91e3T^{2} \)
19 \( 1 + 35.5T + 6.85e3T^{2} \)
23 \( 1 - 153.T + 1.21e4T^{2} \)
29 \( 1 + 223.T + 2.43e4T^{2} \)
31 \( 1 - 126.T + 2.97e4T^{2} \)
37 \( 1 + 217.T + 5.06e4T^{2} \)
41 \( 1 - 105.T + 6.89e4T^{2} \)
43 \( 1 - 183.T + 7.95e4T^{2} \)
47 \( 1 - 96.6T + 1.03e5T^{2} \)
53 \( 1 + 386.T + 1.48e5T^{2} \)
59 \( 1 + 34.5T + 2.05e5T^{2} \)
61 \( 1 + 274.T + 2.26e5T^{2} \)
67 \( 1 + 93.9T + 3.00e5T^{2} \)
71 \( 1 + 741.T + 3.57e5T^{2} \)
73 \( 1 - 640.T + 3.89e5T^{2} \)
79 \( 1 + 182.T + 4.93e5T^{2} \)
83 \( 1 - 288.T + 5.71e5T^{2} \)
89 \( 1 - 963.T + 7.04e5T^{2} \)
97 \( 1 + 481.T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.105393538583679537911402683128, −7.42906955836058059761279398717, −6.55110092600893619815788059161, −5.74820733241354185680904445960, −5.18667476648359443372132212885, −4.36969221592711796752941596261, −3.23061536413008528649680397516, −2.13841746579484245052465215851, −1.24811313124139847134225459235, 0, 1.24811313124139847134225459235, 2.13841746579484245052465215851, 3.23061536413008528649680397516, 4.36969221592711796752941596261, 5.18667476648359443372132212885, 5.74820733241354185680904445960, 6.55110092600893619815788059161, 7.42906955836058059761279398717, 8.105393538583679537911402683128

Graph of the $Z$-function along the critical line