Properties

Label 2-2496-1.1-c1-0-20
Degree $2$
Conductor $2496$
Sign $1$
Analytic cond. $19.9306$
Root an. cond. $4.46437$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s + 2·5-s + 2·7-s + 9-s + 6·11-s + 13-s − 2·15-s − 2·17-s + 6·19-s − 2·21-s − 25-s − 27-s + 6·29-s + 6·31-s − 6·33-s + 4·35-s − 2·37-s − 39-s − 10·41-s − 8·43-s + 2·45-s + 6·47-s − 3·49-s + 2·51-s − 6·53-s + 12·55-s − 6·57-s + ⋯
L(s)  = 1  − 0.577·3-s + 0.894·5-s + 0.755·7-s + 1/3·9-s + 1.80·11-s + 0.277·13-s − 0.516·15-s − 0.485·17-s + 1.37·19-s − 0.436·21-s − 1/5·25-s − 0.192·27-s + 1.11·29-s + 1.07·31-s − 1.04·33-s + 0.676·35-s − 0.328·37-s − 0.160·39-s − 1.56·41-s − 1.21·43-s + 0.298·45-s + 0.875·47-s − 3/7·49-s + 0.280·51-s − 0.824·53-s + 1.61·55-s − 0.794·57-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2496 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2496 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2496\)    =    \(2^{6} \cdot 3 \cdot 13\)
Sign: $1$
Analytic conductor: \(19.9306\)
Root analytic conductor: \(4.46437\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 2496,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.326292767\)
\(L(\frac12)\) \(\approx\) \(2.326292767\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 + T \)
13 \( 1 - T \)
good5 \( 1 - 2 T + p T^{2} \)
7 \( 1 - 2 T + p T^{2} \)
11 \( 1 - 6 T + p T^{2} \)
17 \( 1 + 2 T + p T^{2} \)
19 \( 1 - 6 T + p T^{2} \)
23 \( 1 + p T^{2} \)
29 \( 1 - 6 T + p T^{2} \)
31 \( 1 - 6 T + p T^{2} \)
37 \( 1 + 2 T + p T^{2} \)
41 \( 1 + 10 T + p T^{2} \)
43 \( 1 + 8 T + p T^{2} \)
47 \( 1 - 6 T + p T^{2} \)
53 \( 1 + 6 T + p T^{2} \)
59 \( 1 - 6 T + p T^{2} \)
61 \( 1 - 10 T + p T^{2} \)
67 \( 1 + 2 T + p T^{2} \)
71 \( 1 + 14 T + p T^{2} \)
73 \( 1 + 14 T + p T^{2} \)
79 \( 1 - 4 T + p T^{2} \)
83 \( 1 + 6 T + p T^{2} \)
89 \( 1 - 6 T + p T^{2} \)
97 \( 1 + 14 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.912725461042851430820741656750, −8.325889107858086631488400837557, −7.14292692276436999867746733687, −6.54689080179251243427232913926, −5.87367055113060473110467137059, −5.02186790895111483262642856513, −4.29490991180095637494576477321, −3.21201628736852196442434977525, −1.79263846979031199135308644293, −1.14011382779211435862107847319, 1.14011382779211435862107847319, 1.79263846979031199135308644293, 3.21201628736852196442434977525, 4.29490991180095637494576477321, 5.02186790895111483262642856513, 5.87367055113060473110467137059, 6.54689080179251243427232913926, 7.14292692276436999867746733687, 8.325889107858086631488400837557, 8.912725461042851430820741656750

Graph of the $Z$-function along the critical line