L(s) = 1 | − 0.732·2-s − 7.46·4-s − 16.9·7-s + 11.3·8-s + 11·11-s − 74.6·13-s + 12.3·14-s + 51.4·16-s − 82.7·17-s − 67.9·19-s − 8.05·22-s + 13.3·23-s + 54.6·26-s + 126.·28-s − 168.·29-s − 65.4·31-s − 128.·32-s + 60.6·34-s − 40.8·37-s + 49.7·38-s − 274.·41-s + 2.28·43-s − 82.1·44-s − 9.77·46-s + 71.8·47-s − 56.4·49-s + 557.·52-s + ⋯ |
L(s) = 1 | − 0.258·2-s − 0.933·4-s − 0.914·7-s + 0.500·8-s + 0.301·11-s − 1.59·13-s + 0.236·14-s + 0.803·16-s − 1.18·17-s − 0.820·19-s − 0.0780·22-s + 0.121·23-s + 0.412·26-s + 0.852·28-s − 1.08·29-s − 0.379·31-s − 0.708·32-s + 0.305·34-s − 0.181·37-s + 0.212·38-s − 1.04·41-s + 0.00811·43-s − 0.281·44-s − 0.0313·46-s + 0.222·47-s − 0.164·49-s + 1.48·52-s + ⋯ |
Λ(s)=(=(2475s/2ΓC(s)L(s)Λ(4−s)
Λ(s)=(=(2475s/2ΓC(s+3/2)L(s)Λ(1−s)
Particular Values
L(2) |
≈ |
0.03710789437 |
L(21) |
≈ |
0.03710789437 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1 |
| 5 | 1 |
| 11 | 1−11T |
good | 2 | 1+0.732T+8T2 |
| 7 | 1+16.9T+343T2 |
| 13 | 1+74.6T+2.19e3T2 |
| 17 | 1+82.7T+4.91e3T2 |
| 19 | 1+67.9T+6.85e3T2 |
| 23 | 1−13.3T+1.21e4T2 |
| 29 | 1+168.T+2.43e4T2 |
| 31 | 1+65.4T+2.97e4T2 |
| 37 | 1+40.8T+5.06e4T2 |
| 41 | 1+274.T+6.89e4T2 |
| 43 | 1−2.28T+7.95e4T2 |
| 47 | 1−71.8T+1.03e5T2 |
| 53 | 1+149.T+1.48e5T2 |
| 59 | 1+545.T+2.05e5T2 |
| 61 | 1−101.T+2.26e5T2 |
| 67 | 1+411.T+3.00e5T2 |
| 71 | 1−470.T+3.57e5T2 |
| 73 | 1+610.T+3.89e5T2 |
| 79 | 1+978.T+4.93e5T2 |
| 83 | 1−26.1T+5.71e5T2 |
| 89 | 1−352.T+7.04e5T2 |
| 97 | 1+847.T+9.12e5T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.845453733810344542760511320816, −7.84847147449465822319118412791, −7.08923631205891256304624426717, −6.36484366068527356967868924771, −5.34067623115730663760787883670, −4.57765227154553697146636426464, −3.85317271792736817146173714985, −2.80463247367345617896671556252, −1.71834942272120858071101274549, −0.085896833210309871970054469928,
0.085896833210309871970054469928, 1.71834942272120858071101274549, 2.80463247367345617896671556252, 3.85317271792736817146173714985, 4.57765227154553697146636426464, 5.34067623115730663760787883670, 6.36484366068527356967868924771, 7.08923631205891256304624426717, 7.84847147449465822319118412791, 8.845453733810344542760511320816