Properties

Label 2-2475-1.1-c3-0-3
Degree $2$
Conductor $2475$
Sign $1$
Analytic cond. $146.029$
Root an. cond. $12.0842$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 0.732·2-s − 7.46·4-s − 16.9·7-s + 11.3·8-s + 11·11-s − 74.6·13-s + 12.3·14-s + 51.4·16-s − 82.7·17-s − 67.9·19-s − 8.05·22-s + 13.3·23-s + 54.6·26-s + 126.·28-s − 168.·29-s − 65.4·31-s − 128.·32-s + 60.6·34-s − 40.8·37-s + 49.7·38-s − 274.·41-s + 2.28·43-s − 82.1·44-s − 9.77·46-s + 71.8·47-s − 56.4·49-s + 557.·52-s + ⋯
L(s)  = 1  − 0.258·2-s − 0.933·4-s − 0.914·7-s + 0.500·8-s + 0.301·11-s − 1.59·13-s + 0.236·14-s + 0.803·16-s − 1.18·17-s − 0.820·19-s − 0.0780·22-s + 0.121·23-s + 0.412·26-s + 0.852·28-s − 1.08·29-s − 0.379·31-s − 0.708·32-s + 0.305·34-s − 0.181·37-s + 0.212·38-s − 1.04·41-s + 0.00811·43-s − 0.281·44-s − 0.0313·46-s + 0.222·47-s − 0.164·49-s + 1.48·52-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2475 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2475 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2475\)    =    \(3^{2} \cdot 5^{2} \cdot 11\)
Sign: $1$
Analytic conductor: \(146.029\)
Root analytic conductor: \(12.0842\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 2475,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(0.03710789437\)
\(L(\frac12)\) \(\approx\) \(0.03710789437\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
5 \( 1 \)
11 \( 1 - 11T \)
good2 \( 1 + 0.732T + 8T^{2} \)
7 \( 1 + 16.9T + 343T^{2} \)
13 \( 1 + 74.6T + 2.19e3T^{2} \)
17 \( 1 + 82.7T + 4.91e3T^{2} \)
19 \( 1 + 67.9T + 6.85e3T^{2} \)
23 \( 1 - 13.3T + 1.21e4T^{2} \)
29 \( 1 + 168.T + 2.43e4T^{2} \)
31 \( 1 + 65.4T + 2.97e4T^{2} \)
37 \( 1 + 40.8T + 5.06e4T^{2} \)
41 \( 1 + 274.T + 6.89e4T^{2} \)
43 \( 1 - 2.28T + 7.95e4T^{2} \)
47 \( 1 - 71.8T + 1.03e5T^{2} \)
53 \( 1 + 149.T + 1.48e5T^{2} \)
59 \( 1 + 545.T + 2.05e5T^{2} \)
61 \( 1 - 101.T + 2.26e5T^{2} \)
67 \( 1 + 411.T + 3.00e5T^{2} \)
71 \( 1 - 470.T + 3.57e5T^{2} \)
73 \( 1 + 610.T + 3.89e5T^{2} \)
79 \( 1 + 978.T + 4.93e5T^{2} \)
83 \( 1 - 26.1T + 5.71e5T^{2} \)
89 \( 1 - 352.T + 7.04e5T^{2} \)
97 \( 1 + 847.T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.845453733810344542760511320816, −7.84847147449465822319118412791, −7.08923631205891256304624426717, −6.36484366068527356967868924771, −5.34067623115730663760787883670, −4.57765227154553697146636426464, −3.85317271792736817146173714985, −2.80463247367345617896671556252, −1.71834942272120858071101274549, −0.085896833210309871970054469928, 0.085896833210309871970054469928, 1.71834942272120858071101274549, 2.80463247367345617896671556252, 3.85317271792736817146173714985, 4.57765227154553697146636426464, 5.34067623115730663760787883670, 6.36484366068527356967868924771, 7.08923631205891256304624426717, 7.84847147449465822319118412791, 8.845453733810344542760511320816

Graph of the $Z$-function along the critical line