Properties

Label 2-2475-1.1-c3-0-135
Degree $2$
Conductor $2475$
Sign $-1$
Analytic cond. $146.029$
Root an. cond. $12.0842$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 4.03·2-s + 8.31·4-s − 6.49·7-s − 1.27·8-s − 11·11-s + 30.5·13-s + 26.2·14-s − 61.3·16-s + 43.1·17-s − 6.46·19-s + 44.4·22-s − 108.·23-s − 123.·26-s − 54.0·28-s + 274.·29-s − 68.5·31-s + 258.·32-s − 174.·34-s − 402.·37-s + 26.0·38-s + 268.·41-s − 30.5·43-s − 91.4·44-s + 436.·46-s − 31.5·47-s − 300.·49-s + 253.·52-s + ⋯
L(s)  = 1  − 1.42·2-s + 1.03·4-s − 0.350·7-s − 0.0564·8-s − 0.301·11-s + 0.651·13-s + 0.501·14-s − 0.958·16-s + 0.615·17-s − 0.0780·19-s + 0.430·22-s − 0.980·23-s − 0.930·26-s − 0.364·28-s + 1.75·29-s − 0.397·31-s + 1.42·32-s − 0.878·34-s − 1.78·37-s + 0.111·38-s + 1.02·41-s − 0.108·43-s − 0.313·44-s + 1.39·46-s − 0.0980·47-s − 0.876·49-s + 0.677·52-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2475 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2475 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2475\)    =    \(3^{2} \cdot 5^{2} \cdot 11\)
Sign: $-1$
Analytic conductor: \(146.029\)
Root analytic conductor: \(12.0842\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 2475,\ (\ :3/2),\ -1)\)

Particular Values

\(L(2)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
5 \( 1 \)
11 \( 1 + 11T \)
good2 \( 1 + 4.03T + 8T^{2} \)
7 \( 1 + 6.49T + 343T^{2} \)
13 \( 1 - 30.5T + 2.19e3T^{2} \)
17 \( 1 - 43.1T + 4.91e3T^{2} \)
19 \( 1 + 6.46T + 6.85e3T^{2} \)
23 \( 1 + 108.T + 1.21e4T^{2} \)
29 \( 1 - 274.T + 2.43e4T^{2} \)
31 \( 1 + 68.5T + 2.97e4T^{2} \)
37 \( 1 + 402.T + 5.06e4T^{2} \)
41 \( 1 - 268.T + 6.89e4T^{2} \)
43 \( 1 + 30.5T + 7.95e4T^{2} \)
47 \( 1 + 31.5T + 1.03e5T^{2} \)
53 \( 1 + 252.T + 1.48e5T^{2} \)
59 \( 1 - 558.T + 2.05e5T^{2} \)
61 \( 1 - 335.T + 2.26e5T^{2} \)
67 \( 1 - 28.7T + 3.00e5T^{2} \)
71 \( 1 + 89.0T + 3.57e5T^{2} \)
73 \( 1 + 717.T + 3.89e5T^{2} \)
79 \( 1 - 200.T + 4.93e5T^{2} \)
83 \( 1 + 243.T + 5.71e5T^{2} \)
89 \( 1 - 312.T + 7.04e5T^{2} \)
97 \( 1 - 27.9T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.353269635687547896373284706757, −7.68689843590326600292642929956, −6.85983408587648447115154863048, −6.16322256798716487300231275938, −5.14508688907335366592253377243, −4.08011478932058509051533724222, −3.04222779260184957883982800014, −1.94673506044199708653465687081, −0.997909905006072522647684163779, 0, 0.997909905006072522647684163779, 1.94673506044199708653465687081, 3.04222779260184957883982800014, 4.08011478932058509051533724222, 5.14508688907335366592253377243, 6.16322256798716487300231275938, 6.85983408587648447115154863048, 7.68689843590326600292642929956, 8.353269635687547896373284706757

Graph of the $Z$-function along the critical line