L(s) = 1 | + (−1.5 + 2.59i)2-s + (−1 − 1.73i)3-s + (−0.5 − 0.866i)4-s + (2.5 − 4.33i)5-s + 6·6-s − 21·8-s + (11.5 − 19.9i)9-s + (7.50 + 12.9i)10-s + (22.5 + 38.9i)11-s + (−1.00 + 1.73i)12-s − 59·13-s − 10·15-s + (35.5 − 61.4i)16-s + (−27 − 46.7i)17-s + (34.5 + 59.7i)18-s + (−60.5 + 104. i)19-s + ⋯ |
L(s) = 1 | + (−0.530 + 0.918i)2-s + (−0.192 − 0.333i)3-s + (−0.0625 − 0.108i)4-s + (0.223 − 0.387i)5-s + 0.408·6-s − 0.928·8-s + (0.425 − 0.737i)9-s + (0.237 + 0.410i)10-s + (0.616 + 1.06i)11-s + (−0.0240 + 0.0416i)12-s − 1.25·13-s − 0.172·15-s + (0.554 − 0.960i)16-s + (−0.385 − 0.667i)17-s + (0.451 + 0.782i)18-s + (−0.730 + 1.26i)19-s + ⋯ |
Λ(s)=(=(245s/2ΓC(s)L(s)(−0.605+0.795i)Λ(4−s)
Λ(s)=(=(245s/2ΓC(s+3/2)L(s)(−0.605+0.795i)Λ(1−s)
Degree: |
2 |
Conductor: |
245
= 5⋅72
|
Sign: |
−0.605+0.795i
|
Analytic conductor: |
14.4554 |
Root analytic conductor: |
3.80203 |
Motivic weight: |
3 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ245(226,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
1
|
Selberg data: |
(2, 245, ( :3/2), −0.605+0.795i)
|
Particular Values
L(2) |
= |
0 |
L(21) |
= |
0 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 5 | 1+(−2.5+4.33i)T |
| 7 | 1 |
good | 2 | 1+(1.5−2.59i)T+(−4−6.92i)T2 |
| 3 | 1+(1+1.73i)T+(−13.5+23.3i)T2 |
| 11 | 1+(−22.5−38.9i)T+(−665.5+1.15e3i)T2 |
| 13 | 1+59T+2.19e3T2 |
| 17 | 1+(27+46.7i)T+(−2.45e3+4.25e3i)T2 |
| 19 | 1+(60.5−104.i)T+(−3.42e3−5.94e3i)T2 |
| 23 | 1+(34.5−59.7i)T+(−6.08e3−1.05e4i)T2 |
| 29 | 1+162T+2.43e4T2 |
| 31 | 1+(44+76.2i)T+(−1.48e4+2.57e4i)T2 |
| 37 | 1+(−129.5+224.i)T+(−2.53e4−4.38e4i)T2 |
| 41 | 1+195T+6.89e4T2 |
| 43 | 1+286T+7.95e4T2 |
| 47 | 1+(−22.5+38.9i)T+(−5.19e4−8.99e4i)T2 |
| 53 | 1+(298.5+517.i)T+(−7.44e4+1.28e5i)T2 |
| 59 | 1+(180+311.i)T+(−1.02e5+1.77e5i)T2 |
| 61 | 1+(−196+339.i)T+(−1.13e5−1.96e5i)T2 |
| 67 | 1+(−140−242.i)T+(−1.50e5+2.60e5i)T2 |
| 71 | 1−48T+3.57e5T2 |
| 73 | 1+(−334−578.i)T+(−1.94e5+3.36e5i)T2 |
| 79 | 1+(391−677.i)T+(−2.46e5−4.26e5i)T2 |
| 83 | 1+768T+5.71e5T2 |
| 89 | 1+(597−1.03e3i)T+(−3.52e5−6.10e5i)T2 |
| 97 | 1+902T+9.12e5T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.58267209736287399651128661448, −9.672811118446763062863025039888, −9.542129607324851715494398006041, −8.148237290720854196389580006949, −7.21325014567227958757266482476, −6.58319668320953836951187300449, −5.39143264305443359615586135431, −3.92838727740324194656104250926, −1.95687392609680384929042194330, 0,
1.80984154891676207836866886978, 2.97775683614366429770859189630, 4.52165325647870607520955010196, 5.88957691589284154573896068572, 6.95935213476336409337267378419, 8.428577478688992043387629518628, 9.381113582207653616508340074642, 10.26021769626393133744860111608, 10.92346992168105237331954304574