L(s) = 1 | + (−1.5 + 2.59i)2-s + (−1 − 1.73i)3-s + (−0.5 − 0.866i)4-s + (2.5 − 4.33i)5-s + 6·6-s − 21·8-s + (11.5 − 19.9i)9-s + (7.50 + 12.9i)10-s + (22.5 + 38.9i)11-s + (−1.00 + 1.73i)12-s − 59·13-s − 10·15-s + (35.5 − 61.4i)16-s + (−27 − 46.7i)17-s + (34.5 + 59.7i)18-s + (−60.5 + 104. i)19-s + ⋯ |
L(s) = 1 | + (−0.530 + 0.918i)2-s + (−0.192 − 0.333i)3-s + (−0.0625 − 0.108i)4-s + (0.223 − 0.387i)5-s + 0.408·6-s − 0.928·8-s + (0.425 − 0.737i)9-s + (0.237 + 0.410i)10-s + (0.616 + 1.06i)11-s + (−0.0240 + 0.0416i)12-s − 1.25·13-s − 0.172·15-s + (0.554 − 0.960i)16-s + (−0.385 − 0.667i)17-s + (0.451 + 0.782i)18-s + (−0.730 + 1.26i)19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 245 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.605 + 0.795i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 245 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (-0.605 + 0.795i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(2)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{5}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 5 | \( 1 + (-2.5 + 4.33i)T \) |
| 7 | \( 1 \) |
good | 2 | \( 1 + (1.5 - 2.59i)T + (-4 - 6.92i)T^{2} \) |
| 3 | \( 1 + (1 + 1.73i)T + (-13.5 + 23.3i)T^{2} \) |
| 11 | \( 1 + (-22.5 - 38.9i)T + (-665.5 + 1.15e3i)T^{2} \) |
| 13 | \( 1 + 59T + 2.19e3T^{2} \) |
| 17 | \( 1 + (27 + 46.7i)T + (-2.45e3 + 4.25e3i)T^{2} \) |
| 19 | \( 1 + (60.5 - 104. i)T + (-3.42e3 - 5.94e3i)T^{2} \) |
| 23 | \( 1 + (34.5 - 59.7i)T + (-6.08e3 - 1.05e4i)T^{2} \) |
| 29 | \( 1 + 162T + 2.43e4T^{2} \) |
| 31 | \( 1 + (44 + 76.2i)T + (-1.48e4 + 2.57e4i)T^{2} \) |
| 37 | \( 1 + (-129.5 + 224. i)T + (-2.53e4 - 4.38e4i)T^{2} \) |
| 41 | \( 1 + 195T + 6.89e4T^{2} \) |
| 43 | \( 1 + 286T + 7.95e4T^{2} \) |
| 47 | \( 1 + (-22.5 + 38.9i)T + (-5.19e4 - 8.99e4i)T^{2} \) |
| 53 | \( 1 + (298.5 + 517. i)T + (-7.44e4 + 1.28e5i)T^{2} \) |
| 59 | \( 1 + (180 + 311. i)T + (-1.02e5 + 1.77e5i)T^{2} \) |
| 61 | \( 1 + (-196 + 339. i)T + (-1.13e5 - 1.96e5i)T^{2} \) |
| 67 | \( 1 + (-140 - 242. i)T + (-1.50e5 + 2.60e5i)T^{2} \) |
| 71 | \( 1 - 48T + 3.57e5T^{2} \) |
| 73 | \( 1 + (-334 - 578. i)T + (-1.94e5 + 3.36e5i)T^{2} \) |
| 79 | \( 1 + (391 - 677. i)T + (-2.46e5 - 4.26e5i)T^{2} \) |
| 83 | \( 1 + 768T + 5.71e5T^{2} \) |
| 89 | \( 1 + (597 - 1.03e3i)T + (-3.52e5 - 6.10e5i)T^{2} \) |
| 97 | \( 1 + 902T + 9.12e5T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.58267209736287399651128661448, −9.672811118446763062863025039888, −9.542129607324851715494398006041, −8.148237290720854196389580006949, −7.21325014567227958757266482476, −6.58319668320953836951187300449, −5.39143264305443359615586135431, −3.92838727740324194656104250926, −1.95687392609680384929042194330, 0,
1.80984154891676207836866886978, 2.97775683614366429770859189630, 4.52165325647870607520955010196, 5.88957691589284154573896068572, 6.95935213476336409337267378419, 8.428577478688992043387629518628, 9.381113582207653616508340074642, 10.26021769626393133744860111608, 10.92346992168105237331954304574