Properties

Label 2-245-245.103-c1-0-24
Degree $2$
Conductor $245$
Sign $-0.966 - 0.257i$
Analytic cond. $1.95633$
Root an. cond. $1.39869$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (1.25 − 1.70i)2-s + (−1.93 + 0.365i)3-s + (−0.728 − 2.36i)4-s + (−1.72 − 1.41i)5-s + (−1.80 + 3.75i)6-s + (−2.39 − 1.11i)7-s + (−0.944 − 0.330i)8-s + (0.813 − 0.319i)9-s + (−4.58 + 1.16i)10-s + (0.0928 − 0.236i)11-s + (2.27 + 4.30i)12-s + (−2.22 − 0.251i)13-s + (−4.90 + 2.68i)14-s + (3.86 + 2.10i)15-s + (2.33 − 1.59i)16-s + (−3.82 − 0.143i)17-s + ⋯
L(s)  = 1  + (0.888 − 1.20i)2-s + (−1.11 + 0.211i)3-s + (−0.364 − 1.18i)4-s + (−0.773 − 0.633i)5-s + (−0.737 + 1.53i)6-s + (−0.907 − 0.421i)7-s + (−0.333 − 0.116i)8-s + (0.271 − 0.106i)9-s + (−1.44 + 0.367i)10-s + (0.0279 − 0.0713i)11-s + (0.656 + 1.24i)12-s + (−0.618 − 0.0696i)13-s + (−1.31 + 0.717i)14-s + (0.997 + 0.544i)15-s + (0.584 − 0.398i)16-s + (−0.928 − 0.0347i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 245 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.966 - 0.257i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 245 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.966 - 0.257i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(245\)    =    \(5 \cdot 7^{2}\)
Sign: $-0.966 - 0.257i$
Analytic conductor: \(1.95633\)
Root analytic conductor: \(1.39869\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{245} (103, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 245,\ (\ :1/2),\ -0.966 - 0.257i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.0956785 + 0.729612i\)
\(L(\frac12)\) \(\approx\) \(0.0956785 + 0.729612i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad5 \( 1 + (1.72 + 1.41i)T \)
7 \( 1 + (2.39 + 1.11i)T \)
good2 \( 1 + (-1.25 + 1.70i)T + (-0.589 - 1.91i)T^{2} \)
3 \( 1 + (1.93 - 0.365i)T + (2.79 - 1.09i)T^{2} \)
11 \( 1 + (-0.0928 + 0.236i)T + (-8.06 - 7.48i)T^{2} \)
13 \( 1 + (2.22 + 0.251i)T + (12.6 + 2.89i)T^{2} \)
17 \( 1 + (3.82 + 0.143i)T + (16.9 + 1.27i)T^{2} \)
19 \( 1 + (-1.87 + 3.24i)T + (-9.5 - 16.4i)T^{2} \)
23 \( 1 + (0.169 + 4.52i)T + (-22.9 + 1.71i)T^{2} \)
29 \( 1 + (0.249 - 0.0570i)T + (26.1 - 12.5i)T^{2} \)
31 \( 1 + (-6.33 + 3.65i)T + (15.5 - 26.8i)T^{2} \)
37 \( 1 + (-0.555 + 0.293i)T + (20.8 - 30.5i)T^{2} \)
41 \( 1 + (3.39 + 7.04i)T + (-25.5 + 32.0i)T^{2} \)
43 \( 1 + (-0.0831 - 0.237i)T + (-33.6 + 26.8i)T^{2} \)
47 \( 1 + (-7.95 - 5.86i)T + (13.8 + 44.9i)T^{2} \)
53 \( 1 + (9.66 + 5.10i)T + (29.8 + 43.7i)T^{2} \)
59 \( 1 + (-0.928 - 12.3i)T + (-58.3 + 8.79i)T^{2} \)
61 \( 1 + (2.88 - 9.36i)T + (-50.4 - 34.3i)T^{2} \)
67 \( 1 + (11.0 + 2.95i)T + (58.0 + 33.5i)T^{2} \)
71 \( 1 + (-2.31 + 10.1i)T + (-63.9 - 30.8i)T^{2} \)
73 \( 1 + (-0.123 + 0.0908i)T + (21.5 - 69.7i)T^{2} \)
79 \( 1 + (0.348 + 0.201i)T + (39.5 + 68.4i)T^{2} \)
83 \( 1 + (1.84 + 16.3i)T + (-80.9 + 18.4i)T^{2} \)
89 \( 1 + (0.234 + 0.596i)T + (-65.2 + 60.5i)T^{2} \)
97 \( 1 + (0.348 + 0.348i)T + 97iT^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.76336207432018013201675667911, −10.90546890634357159251715066847, −10.21319630033405978052988249482, −8.988776219052254029589631053325, −7.39960405407656094868478353170, −6.09625816786844804848179213968, −4.84223108643899716252811688960, −4.26149078662999029814420685683, −2.84214384870822108155021680571, −0.49789470778302437400067192702, 3.27197446715708715020361457056, 4.61089572717401879621513819297, 5.69934135359570443413994156676, 6.52530930330511818210804926605, 7.09671038588710913947335596493, 8.244611051705761067690690930634, 9.829434720609844591053056400834, 10.97818181260307433950740841515, 11.98057130134429070728617618647, 12.51708368870981069848471145357

Graph of the $Z$-function along the critical line