Properties

Label 2-245-245.103-c1-0-20
Degree $2$
Conductor $245$
Sign $0.548 + 0.836i$
Analytic cond. $1.95633$
Root an. cond. $1.39869$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (0.632 − 0.856i)2-s + (0.641 − 0.121i)3-s + (0.255 + 0.827i)4-s + (0.264 − 2.22i)5-s + (0.301 − 0.626i)6-s + (0.776 − 2.52i)7-s + (2.88 + 1.00i)8-s + (−2.39 + 0.940i)9-s + (−1.73 − 1.63i)10-s + (−0.470 + 1.19i)11-s + (0.264 + 0.499i)12-s + (1.41 + 0.159i)13-s + (−1.67 − 2.26i)14-s + (−0.0996 − 1.45i)15-s + (1.25 − 0.855i)16-s + (1.42 + 0.0531i)17-s + ⋯
L(s)  = 1  + (0.447 − 0.605i)2-s + (0.370 − 0.0700i)3-s + (0.127 + 0.413i)4-s + (0.118 − 0.992i)5-s + (0.123 − 0.255i)6-s + (0.293 − 0.955i)7-s + (1.01 + 0.356i)8-s + (−0.798 + 0.313i)9-s + (−0.548 − 0.515i)10-s + (−0.141 + 0.361i)11-s + (0.0762 + 0.144i)12-s + (0.393 + 0.0442i)13-s + (−0.447 − 0.605i)14-s + (−0.0257 − 0.375i)15-s + (0.313 − 0.213i)16-s + (0.344 + 0.0128i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 245 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.548 + 0.836i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 245 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.548 + 0.836i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(245\)    =    \(5 \cdot 7^{2}\)
Sign: $0.548 + 0.836i$
Analytic conductor: \(1.95633\)
Root analytic conductor: \(1.39869\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{245} (103, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 245,\ (\ :1/2),\ 0.548 + 0.836i)\)

Particular Values

\(L(1)\) \(\approx\) \(1.61686 - 0.873102i\)
\(L(\frac12)\) \(\approx\) \(1.61686 - 0.873102i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad5 \( 1 + (-0.264 + 2.22i)T \)
7 \( 1 + (-0.776 + 2.52i)T \)
good2 \( 1 + (-0.632 + 0.856i)T + (-0.589 - 1.91i)T^{2} \)
3 \( 1 + (-0.641 + 0.121i)T + (2.79 - 1.09i)T^{2} \)
11 \( 1 + (0.470 - 1.19i)T + (-8.06 - 7.48i)T^{2} \)
13 \( 1 + (-1.41 - 0.159i)T + (12.6 + 2.89i)T^{2} \)
17 \( 1 + (-1.42 - 0.0531i)T + (16.9 + 1.27i)T^{2} \)
19 \( 1 + (-0.606 + 1.05i)T + (-9.5 - 16.4i)T^{2} \)
23 \( 1 + (-0.0807 - 2.15i)T + (-22.9 + 1.71i)T^{2} \)
29 \( 1 + (-2.45 + 0.561i)T + (26.1 - 12.5i)T^{2} \)
31 \( 1 + (5.39 - 3.11i)T + (15.5 - 26.8i)T^{2} \)
37 \( 1 + (10.5 - 5.58i)T + (20.8 - 30.5i)T^{2} \)
41 \( 1 + (-1.62 - 3.37i)T + (-25.5 + 32.0i)T^{2} \)
43 \( 1 + (1.51 + 4.34i)T + (-33.6 + 26.8i)T^{2} \)
47 \( 1 + (-8.75 - 6.45i)T + (13.8 + 44.9i)T^{2} \)
53 \( 1 + (-2.80 - 1.48i)T + (29.8 + 43.7i)T^{2} \)
59 \( 1 + (-0.0385 - 0.514i)T + (-58.3 + 8.79i)T^{2} \)
61 \( 1 + (-0.350 + 1.13i)T + (-50.4 - 34.3i)T^{2} \)
67 \( 1 + (6.04 + 1.61i)T + (58.0 + 33.5i)T^{2} \)
71 \( 1 + (1.52 - 6.68i)T + (-63.9 - 30.8i)T^{2} \)
73 \( 1 + (-11.1 + 8.20i)T + (21.5 - 69.7i)T^{2} \)
79 \( 1 + (7.23 + 4.17i)T + (39.5 + 68.4i)T^{2} \)
83 \( 1 + (-0.967 - 8.58i)T + (-80.9 + 18.4i)T^{2} \)
89 \( 1 + (6.50 + 16.5i)T + (-65.2 + 60.5i)T^{2} \)
97 \( 1 + (3.80 + 3.80i)T + 97iT^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.03288690312925934249465663270, −11.16132982567717009769844330642, −10.24551578207812100360534269969, −8.893288248732177377613222779026, −8.079236410601244155696419072634, −7.20752920430710663006389727815, −5.39836737244402720624264028996, −4.38830760666721234551788234057, −3.25456614015892708785589805032, −1.66592865167433396640112973006, 2.28541108092510259824693150085, 3.62916629563698320948485266031, 5.43288928490705760822984816000, 5.98744336888476334126141377876, 7.07915875788693988054591560311, 8.240429563368053110372439308141, 9.265386397634394012874217406179, 10.45440803754820883259631388769, 11.20063821074624473222163522949, 12.22176547319371306146539288526

Graph of the $Z$-function along the critical line