L(s) = 1 | + (1.92 − 0.382i)5-s + (−0.541 + 0.541i)13-s + i·17-s + (2.63 − 1.08i)25-s + (0.324 + 1.63i)29-s + (1.08 − 1.63i)37-s + (−1.08 − 0.216i)41-s + (−0.923 − 0.382i)49-s + (−0.707 − 0.292i)53-s + (−1.63 − 0.324i)61-s + (−0.834 + 1.24i)65-s + (−0.382 − 1.92i)73-s + (0.382 + 1.92i)85-s + (0.541 − 0.541i)89-s + (1.08 − 0.216i)97-s + ⋯ |
L(s) = 1 | + (1.92 − 0.382i)5-s + (−0.541 + 0.541i)13-s + i·17-s + (2.63 − 1.08i)25-s + (0.324 + 1.63i)29-s + (1.08 − 1.63i)37-s + (−1.08 − 0.216i)41-s + (−0.923 − 0.382i)49-s + (−0.707 − 0.292i)53-s + (−1.63 − 0.324i)61-s + (−0.834 + 1.24i)65-s + (−0.382 − 1.92i)73-s + (0.382 + 1.92i)85-s + (0.541 − 0.541i)89-s + (1.08 − 0.216i)97-s + ⋯ |
Λ(s)=(=(2448s/2ΓC(s)L(s)(0.999+0.00538i)Λ(1−s)
Λ(s)=(=(2448s/2ΓC(s)L(s)(0.999+0.00538i)Λ(1−s)
Degree: |
2 |
Conductor: |
2448
= 24⋅32⋅17
|
Sign: |
0.999+0.00538i
|
Analytic conductor: |
1.22171 |
Root analytic conductor: |
1.10531 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ2448(143,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 2448, ( :0), 0.999+0.00538i)
|
Particular Values
L(21) |
≈ |
1.668261392 |
L(21) |
≈ |
1.668261392 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1 |
| 17 | 1−iT |
good | 5 | 1+(−1.92+0.382i)T+(0.923−0.382i)T2 |
| 7 | 1+(0.923+0.382i)T2 |
| 11 | 1+(0.382−0.923i)T2 |
| 13 | 1+(0.541−0.541i)T−iT2 |
| 19 | 1+(0.707+0.707i)T2 |
| 23 | 1+(−0.382+0.923i)T2 |
| 29 | 1+(−0.324−1.63i)T+(−0.923+0.382i)T2 |
| 31 | 1+(−0.382−0.923i)T2 |
| 37 | 1+(−1.08+1.63i)T+(−0.382−0.923i)T2 |
| 41 | 1+(1.08+0.216i)T+(0.923+0.382i)T2 |
| 43 | 1+(0.707−0.707i)T2 |
| 47 | 1−iT2 |
| 53 | 1+(0.707+0.292i)T+(0.707+0.707i)T2 |
| 59 | 1+(0.707−0.707i)T2 |
| 61 | 1+(1.63+0.324i)T+(0.923+0.382i)T2 |
| 67 | 1+T2 |
| 71 | 1+(−0.382−0.923i)T2 |
| 73 | 1+(0.382+1.92i)T+(−0.923+0.382i)T2 |
| 79 | 1+(−0.382+0.923i)T2 |
| 83 | 1+(0.707+0.707i)T2 |
| 89 | 1+(−0.541+0.541i)T−iT2 |
| 97 | 1+(−1.08+0.216i)T+(0.923−0.382i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.129732029081890544004737107451, −8.678841197161910598014350925556, −7.54861264013351767836896921779, −6.55980437702882575860074838147, −6.08602310104126069646110004502, −5.22856069132374263722647492126, −4.60847673234576695104990858784, −3.26312736417885952956850399770, −2.13940061779729048441012798485, −1.50493360291353787008980613226,
1.36325453808845905103828391990, 2.51322207374640661923634823954, 2.99282666787585403103213062234, 4.61065365357188190013537413586, 5.26951220694871638713747592808, 6.10968542375919954731786616517, 6.59167729483433782836308829048, 7.53900165000748765268401109112, 8.427352963738548716740190842972, 9.496927067737046169802575015598