L(s) = 1 | + (1.92 − 0.382i)5-s + (−0.541 + 0.541i)13-s + i·17-s + (2.63 − 1.08i)25-s + (0.324 + 1.63i)29-s + (1.08 − 1.63i)37-s + (−1.08 − 0.216i)41-s + (−0.923 − 0.382i)49-s + (−0.707 − 0.292i)53-s + (−1.63 − 0.324i)61-s + (−0.834 + 1.24i)65-s + (−0.382 − 1.92i)73-s + (0.382 + 1.92i)85-s + (0.541 − 0.541i)89-s + (1.08 − 0.216i)97-s + ⋯ |
L(s) = 1 | + (1.92 − 0.382i)5-s + (−0.541 + 0.541i)13-s + i·17-s + (2.63 − 1.08i)25-s + (0.324 + 1.63i)29-s + (1.08 − 1.63i)37-s + (−1.08 − 0.216i)41-s + (−0.923 − 0.382i)49-s + (−0.707 − 0.292i)53-s + (−1.63 − 0.324i)61-s + (−0.834 + 1.24i)65-s + (−0.382 − 1.92i)73-s + (0.382 + 1.92i)85-s + (0.541 − 0.541i)89-s + (1.08 − 0.216i)97-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2448 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.999 + 0.00538i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2448 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.999 + 0.00538i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.668261392\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.668261392\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 17 | \( 1 - iT \) |
good | 5 | \( 1 + (-1.92 + 0.382i)T + (0.923 - 0.382i)T^{2} \) |
| 7 | \( 1 + (0.923 + 0.382i)T^{2} \) |
| 11 | \( 1 + (0.382 - 0.923i)T^{2} \) |
| 13 | \( 1 + (0.541 - 0.541i)T - iT^{2} \) |
| 19 | \( 1 + (0.707 + 0.707i)T^{2} \) |
| 23 | \( 1 + (-0.382 + 0.923i)T^{2} \) |
| 29 | \( 1 + (-0.324 - 1.63i)T + (-0.923 + 0.382i)T^{2} \) |
| 31 | \( 1 + (-0.382 - 0.923i)T^{2} \) |
| 37 | \( 1 + (-1.08 + 1.63i)T + (-0.382 - 0.923i)T^{2} \) |
| 41 | \( 1 + (1.08 + 0.216i)T + (0.923 + 0.382i)T^{2} \) |
| 43 | \( 1 + (0.707 - 0.707i)T^{2} \) |
| 47 | \( 1 - iT^{2} \) |
| 53 | \( 1 + (0.707 + 0.292i)T + (0.707 + 0.707i)T^{2} \) |
| 59 | \( 1 + (0.707 - 0.707i)T^{2} \) |
| 61 | \( 1 + (1.63 + 0.324i)T + (0.923 + 0.382i)T^{2} \) |
| 67 | \( 1 + T^{2} \) |
| 71 | \( 1 + (-0.382 - 0.923i)T^{2} \) |
| 73 | \( 1 + (0.382 + 1.92i)T + (-0.923 + 0.382i)T^{2} \) |
| 79 | \( 1 + (-0.382 + 0.923i)T^{2} \) |
| 83 | \( 1 + (0.707 + 0.707i)T^{2} \) |
| 89 | \( 1 + (-0.541 + 0.541i)T - iT^{2} \) |
| 97 | \( 1 + (-1.08 + 0.216i)T + (0.923 - 0.382i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.129732029081890544004737107451, −8.678841197161910598014350925556, −7.54861264013351767836896921779, −6.55980437702882575860074838147, −6.08602310104126069646110004502, −5.22856069132374263722647492126, −4.60847673234576695104990858784, −3.26312736417885952956850399770, −2.13940061779729048441012798485, −1.50493360291353787008980613226,
1.36325453808845905103828391990, 2.51322207374640661923634823954, 2.99282666787585403103213062234, 4.61065365357188190013537413586, 5.26951220694871638713747592808, 6.10968542375919954731786616517, 6.59167729483433782836308829048, 7.53900165000748765268401109112, 8.427352963738548716740190842972, 9.496927067737046169802575015598