Properties

Label 2-242-121.100-c1-0-1
Degree $2$
Conductor $242$
Sign $0.0629 - 0.998i$
Analytic cond. $1.93237$
Root an. cond. $1.39010$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.415 − 0.909i)2-s + 0.647·3-s + (−0.654 + 0.755i)4-s + (−2.94 + 0.863i)5-s + (−0.268 − 0.588i)6-s + (−0.524 + 3.64i)7-s + (0.959 + 0.281i)8-s − 2.58·9-s + (2.00 + 2.31i)10-s + (0.347 + 3.29i)11-s + (−0.423 + 0.489i)12-s + (0.708 − 0.818i)13-s + (3.53 − 1.03i)14-s + (−1.90 + 0.559i)15-s + (−0.142 − 0.989i)16-s + (−0.910 + 0.584i)17-s + ⋯
L(s)  = 1  + (−0.293 − 0.643i)2-s + 0.373·3-s + (−0.327 + 0.377i)4-s + (−1.31 + 0.386i)5-s + (−0.109 − 0.240i)6-s + (−0.198 + 1.37i)7-s + (0.339 + 0.0996i)8-s − 0.860·9-s + (0.634 + 0.732i)10-s + (0.104 + 0.994i)11-s + (−0.122 + 0.141i)12-s + (0.196 − 0.226i)13-s + (0.945 − 0.277i)14-s + (−0.491 + 0.144i)15-s + (−0.0355 − 0.247i)16-s + (−0.220 + 0.141i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 242 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.0629 - 0.998i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 242 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.0629 - 0.998i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(242\)    =    \(2 \cdot 11^{2}\)
Sign: $0.0629 - 0.998i$
Analytic conductor: \(1.93237\)
Root analytic conductor: \(1.39010\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{242} (221, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 242,\ (\ :1/2),\ 0.0629 - 0.998i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.443746 + 0.416650i\)
\(L(\frac12)\) \(\approx\) \(0.443746 + 0.416650i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (0.415 + 0.909i)T \)
11 \( 1 + (-0.347 - 3.29i)T \)
good3 \( 1 - 0.647T + 3T^{2} \)
5 \( 1 + (2.94 - 0.863i)T + (4.20 - 2.70i)T^{2} \)
7 \( 1 + (0.524 - 3.64i)T + (-6.71 - 1.97i)T^{2} \)
13 \( 1 + (-0.708 + 0.818i)T + (-1.85 - 12.8i)T^{2} \)
17 \( 1 + (0.910 - 0.584i)T + (7.06 - 15.4i)T^{2} \)
19 \( 1 + (-0.422 - 0.271i)T + (7.89 + 17.2i)T^{2} \)
23 \( 1 + (0.519 + 3.60i)T + (-22.0 + 6.47i)T^{2} \)
29 \( 1 + (3.72 + 2.39i)T + (12.0 + 26.3i)T^{2} \)
31 \( 1 + (-6.34 - 7.32i)T + (-4.41 + 30.6i)T^{2} \)
37 \( 1 + (-6.89 - 7.95i)T + (-5.26 + 36.6i)T^{2} \)
41 \( 1 + (1.31 + 2.87i)T + (-26.8 + 30.9i)T^{2} \)
43 \( 1 + (4.68 + 1.37i)T + (36.1 + 23.2i)T^{2} \)
47 \( 1 + (0.809 - 1.77i)T + (-30.7 - 35.5i)T^{2} \)
53 \( 1 + (1.11 - 7.73i)T + (-50.8 - 14.9i)T^{2} \)
59 \( 1 + (-3.02 + 6.63i)T + (-38.6 - 44.5i)T^{2} \)
61 \( 1 + (0.587 - 1.28i)T + (-39.9 - 46.1i)T^{2} \)
67 \( 1 + (4.65 + 10.1i)T + (-43.8 + 50.6i)T^{2} \)
71 \( 1 + (-3.07 - 1.97i)T + (29.4 + 64.5i)T^{2} \)
73 \( 1 + (0.163 + 1.13i)T + (-70.0 + 20.5i)T^{2} \)
79 \( 1 + (-4.89 + 1.43i)T + (66.4 - 42.7i)T^{2} \)
83 \( 1 + (-0.281 + 1.96i)T + (-79.6 - 23.3i)T^{2} \)
89 \( 1 + (6.30 - 4.05i)T + (36.9 - 80.9i)T^{2} \)
97 \( 1 + (-13.6 - 4.01i)T + (81.6 + 52.4i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.96732759634162065877410774667, −11.69183193348971998458174359807, −10.53269951207408702388067394696, −9.338840781575846219392520545878, −8.484323645995284989470375040849, −7.80141948413229810749907426059, −6.37908666947132655638727244644, −4.80431335173174104141850713899, −3.41707692211962305617017247009, −2.44234133792519952855401823546, 0.51132995999349634627723243170, 3.45924750094157330946476917561, 4.32905919858560545856045350885, 5.87660459892860085557703313507, 7.18418054907084594284994956600, 7.955878996333180467922826638484, 8.643177036188703244532304945976, 9.754621324971324600121401207794, 11.13473945046584442999002608023, 11.54965975833677336427799706569

Graph of the $Z$-function along the critical line