L(s) = 1 | + (0.309 − 0.951i)2-s + (1.61 − 1.17i)3-s + (−0.809 − 0.587i)4-s + (−0.927 − 2.85i)5-s + (−0.618 − 1.90i)6-s + (1.61 + 1.17i)7-s + (−0.809 + 0.587i)8-s + (0.309 − 0.951i)9-s − 3·10-s − 1.99·12-s + (−1.54 + 4.75i)13-s + (1.61 − 1.17i)14-s + (−4.85 − 3.52i)15-s + (0.309 + 0.951i)16-s + (−0.927 − 2.85i)17-s + (−0.809 − 0.587i)18-s + ⋯ |
L(s) = 1 | + (0.218 − 0.672i)2-s + (0.934 − 0.678i)3-s + (−0.404 − 0.293i)4-s + (−0.414 − 1.27i)5-s + (−0.252 − 0.776i)6-s + (0.611 + 0.444i)7-s + (−0.286 + 0.207i)8-s + (0.103 − 0.317i)9-s − 0.948·10-s − 0.577·12-s + (−0.428 + 1.31i)13-s + (0.432 − 0.314i)14-s + (−1.25 − 0.910i)15-s + (0.0772 + 0.237i)16-s + (−0.224 − 0.691i)17-s + (−0.190 − 0.138i)18-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 242 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.353 + 0.935i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 242 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.353 + 0.935i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.955363 - 1.38292i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.955363 - 1.38292i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.309 + 0.951i)T \) |
| 11 | \( 1 \) |
good | 3 | \( 1 + (-1.61 + 1.17i)T + (0.927 - 2.85i)T^{2} \) |
| 5 | \( 1 + (0.927 + 2.85i)T + (-4.04 + 2.93i)T^{2} \) |
| 7 | \( 1 + (-1.61 - 1.17i)T + (2.16 + 6.65i)T^{2} \) |
| 13 | \( 1 + (1.54 - 4.75i)T + (-10.5 - 7.64i)T^{2} \) |
| 17 | \( 1 + (0.927 + 2.85i)T + (-13.7 + 9.99i)T^{2} \) |
| 19 | \( 1 + (-1.61 + 1.17i)T + (5.87 - 18.0i)T^{2} \) |
| 23 | \( 1 - 6T + 23T^{2} \) |
| 29 | \( 1 + (2.42 + 1.76i)T + (8.96 + 27.5i)T^{2} \) |
| 31 | \( 1 + (-0.618 + 1.90i)T + (-25.0 - 18.2i)T^{2} \) |
| 37 | \( 1 + (-5.66 - 4.11i)T + (11.4 + 35.1i)T^{2} \) |
| 41 | \( 1 + (-2.42 + 1.76i)T + (12.6 - 38.9i)T^{2} \) |
| 43 | \( 1 + 8T + 43T^{2} \) |
| 47 | \( 1 + (4.85 - 3.52i)T + (14.5 - 44.6i)T^{2} \) |
| 53 | \( 1 + (0.927 - 2.85i)T + (-42.8 - 31.1i)T^{2} \) |
| 59 | \( 1 + (18.2 + 56.1i)T^{2} \) |
| 61 | \( 1 + (-3.09 - 9.51i)T + (-49.3 + 35.8i)T^{2} \) |
| 67 | \( 1 + 10T + 67T^{2} \) |
| 71 | \( 1 + (-3.70 - 11.4i)T + (-57.4 + 41.7i)T^{2} \) |
| 73 | \( 1 + (-11.3 - 8.22i)T + (22.5 + 69.4i)T^{2} \) |
| 79 | \( 1 + (0.618 - 1.90i)T + (-63.9 - 46.4i)T^{2} \) |
| 83 | \( 1 + (5.56 + 17.1i)T + (-67.1 + 48.7i)T^{2} \) |
| 89 | \( 1 + 9T + 89T^{2} \) |
| 97 | \( 1 + (-3.39 + 10.4i)T + (-78.4 - 57.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.82025144157246570923784666544, −11.35056717122604040130312908538, −9.540104176372988698471333158807, −8.893999029868460559083859194618, −8.171323434084374599400630485883, −7.05893944788126403196303485209, −5.18916228497160214687033864297, −4.38789702618575015272993867864, −2.68597181236675632694368193775, −1.44000740456367459066609762560,
2.95087997929376551508478116347, 3.73131885455150224204099152280, 5.05307937331263625157316216831, 6.54217077184994747755515742215, 7.62174415354649277039938068051, 8.218442333592887859121097418127, 9.462122227285091575015017178890, 10.46369864450507313751878386760, 11.18367431417662814844170319665, 12.61746976380851089621741350085