L(s) = 1 | + (0.309 − 0.951i)2-s + (2.21 − 1.60i)3-s + (−0.809 − 0.587i)4-s + (0.535 + 1.64i)5-s + (−0.844 − 2.59i)6-s + (−1.02 − 0.745i)7-s + (−0.809 + 0.587i)8-s + (1.37 − 4.24i)9-s + 1.73·10-s − 2.73·12-s + (0.927 − 2.85i)13-s + (−1.02 + 0.745i)14-s + (3.82 + 2.78i)15-s + (0.309 + 0.951i)16-s + (1.60 + 4.94i)17-s + (−3.61 − 2.62i)18-s + ⋯ |
L(s) = 1 | + (0.218 − 0.672i)2-s + (1.27 − 0.927i)3-s + (−0.404 − 0.293i)4-s + (0.239 + 0.736i)5-s + (−0.344 − 1.06i)6-s + (−0.387 − 0.281i)7-s + (−0.286 + 0.207i)8-s + (0.459 − 1.41i)9-s + 0.547·10-s − 0.788·12-s + (0.257 − 0.791i)13-s + (−0.274 + 0.199i)14-s + (0.988 + 0.718i)15-s + (0.0772 + 0.237i)16-s + (0.389 + 1.19i)17-s + (−0.851 − 0.618i)18-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 242 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.0783 + 0.996i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 242 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.0783 + 0.996i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.39203 - 1.28688i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.39203 - 1.28688i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.309 + 0.951i)T \) |
| 11 | \( 1 \) |
good | 3 | \( 1 + (-2.21 + 1.60i)T + (0.927 - 2.85i)T^{2} \) |
| 5 | \( 1 + (-0.535 - 1.64i)T + (-4.04 + 2.93i)T^{2} \) |
| 7 | \( 1 + (1.02 + 0.745i)T + (2.16 + 6.65i)T^{2} \) |
| 13 | \( 1 + (-0.927 + 2.85i)T + (-10.5 - 7.64i)T^{2} \) |
| 17 | \( 1 + (-1.60 - 4.94i)T + (-13.7 + 9.99i)T^{2} \) |
| 19 | \( 1 + (3.82 - 2.78i)T + (5.87 - 18.0i)T^{2} \) |
| 23 | \( 1 + 4.73T + 23T^{2} \) |
| 29 | \( 1 + (-2.42 - 1.76i)T + (8.96 + 27.5i)T^{2} \) |
| 31 | \( 1 + (3.15 - 9.69i)T + (-25.0 - 18.2i)T^{2} \) |
| 37 | \( 1 + (2.58 + 1.87i)T + (11.4 + 35.1i)T^{2} \) |
| 41 | \( 1 + (-9.05 + 6.58i)T + (12.6 - 38.9i)T^{2} \) |
| 43 | \( 1 + 43T^{2} \) |
| 47 | \( 1 + (1.77 - 1.29i)T + (14.5 - 44.6i)T^{2} \) |
| 53 | \( 1 + (-0.248 + 0.764i)T + (-42.8 - 31.1i)T^{2} \) |
| 59 | \( 1 + (2.05 + 1.49i)T + (18.2 + 56.1i)T^{2} \) |
| 61 | \( 1 + (-2.92 - 9.00i)T + (-49.3 + 35.8i)T^{2} \) |
| 67 | \( 1 - 0.196T + 67T^{2} \) |
| 71 | \( 1 + (0.783 + 2.41i)T + (-57.4 + 41.7i)T^{2} \) |
| 73 | \( 1 + (10.4 + 7.59i)T + (22.5 + 69.4i)T^{2} \) |
| 79 | \( 1 + (0.391 - 1.20i)T + (-63.9 - 46.4i)T^{2} \) |
| 83 | \( 1 + (0.678 + 2.08i)T + (-67.1 + 48.7i)T^{2} \) |
| 89 | \( 1 + 0.464T + 89T^{2} \) |
| 97 | \( 1 + (0.309 - 0.951i)T + (-78.4 - 57.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.38607222993929264156319394293, −10.65632618734401596951228913383, −10.22488359574971294068079023713, −8.835776153971817470051661361797, −8.095766608318707661389420751755, −6.96404254295914970468905820442, −5.92484094783559857134616937902, −3.82440712981948407638679891244, −2.95024897174784898936876747323, −1.73104834410685240683643868214,
2.59416430774257530313069822620, 4.00375537560500480305433016009, 4.83963769962810852324892778544, 6.20028895473836000151698479044, 7.62706293261133120692539888151, 8.626755678212497750582367165674, 9.295343665868021158404219483714, 9.842442031728801088797830319960, 11.40546638630944326637382326579, 12.70612647298895795690038359598