L(s) = 1 | + (−0.309 − 0.951i)2-s + (−0.592 − 0.430i)3-s + (−0.809 + 0.587i)4-s + (−0.535 + 1.64i)5-s + (−0.226 + 0.696i)6-s + (3.82 − 2.78i)7-s + (0.809 + 0.587i)8-s + (−0.761 − 2.34i)9-s + 1.73·10-s + 0.732·12-s + (−0.927 − 2.85i)13-s + (−3.82 − 2.78i)14-s + (1.02 − 0.745i)15-s + (0.309 − 0.951i)16-s + (1.60 − 4.94i)17-s + (−1.99 + 1.44i)18-s + ⋯ |
L(s) = 1 | + (−0.218 − 0.672i)2-s + (−0.341 − 0.248i)3-s + (−0.404 + 0.293i)4-s + (−0.239 + 0.736i)5-s + (−0.0923 + 0.284i)6-s + (1.44 − 1.05i)7-s + (0.286 + 0.207i)8-s + (−0.253 − 0.781i)9-s + 0.547·10-s + 0.211·12-s + (−0.257 − 0.791i)13-s + (−1.02 − 0.743i)14-s + (0.264 − 0.192i)15-s + (0.0772 − 0.237i)16-s + (0.389 − 1.19i)17-s + (−0.469 + 0.341i)18-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 242 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.0783 + 0.996i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 242 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.0783 + 0.996i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.678802 - 0.734265i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.678802 - 0.734265i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.309 + 0.951i)T \) |
| 11 | \( 1 \) |
good | 3 | \( 1 + (0.592 + 0.430i)T + (0.927 + 2.85i)T^{2} \) |
| 5 | \( 1 + (0.535 - 1.64i)T + (-4.04 - 2.93i)T^{2} \) |
| 7 | \( 1 + (-3.82 + 2.78i)T + (2.16 - 6.65i)T^{2} \) |
| 13 | \( 1 + (0.927 + 2.85i)T + (-10.5 + 7.64i)T^{2} \) |
| 17 | \( 1 + (-1.60 + 4.94i)T + (-13.7 - 9.99i)T^{2} \) |
| 19 | \( 1 + (-1.02 - 0.745i)T + (5.87 + 18.0i)T^{2} \) |
| 23 | \( 1 + 1.26T + 23T^{2} \) |
| 29 | \( 1 + (2.42 - 1.76i)T + (8.96 - 27.5i)T^{2} \) |
| 31 | \( 1 + (-0.0606 - 0.186i)T + (-25.0 + 18.2i)T^{2} \) |
| 37 | \( 1 + (-5.82 + 4.22i)T + (11.4 - 35.1i)T^{2} \) |
| 41 | \( 1 + (0.650 + 0.472i)T + (12.6 + 38.9i)T^{2} \) |
| 43 | \( 1 + 43T^{2} \) |
| 47 | \( 1 + (-6.63 - 4.81i)T + (14.5 + 44.6i)T^{2} \) |
| 53 | \( 1 + (-3.45 - 10.6i)T + (-42.8 + 31.1i)T^{2} \) |
| 59 | \( 1 + (7.65 - 5.56i)T + (18.2 - 56.1i)T^{2} \) |
| 61 | \( 1 + (0.783 - 2.41i)T + (-49.3 - 35.8i)T^{2} \) |
| 67 | \( 1 + 10.1T + 67T^{2} \) |
| 71 | \( 1 + (2.92 - 9.00i)T + (-57.4 - 41.7i)T^{2} \) |
| 73 | \( 1 + (0.750 - 0.545i)T + (22.5 - 69.4i)T^{2} \) |
| 79 | \( 1 + (-1.46 - 4.50i)T + (-63.9 + 46.4i)T^{2} \) |
| 83 | \( 1 + (2.53 - 7.79i)T + (-67.1 - 48.7i)T^{2} \) |
| 89 | \( 1 - 6.46T + 89T^{2} \) |
| 97 | \( 1 + (0.309 + 0.951i)T + (-78.4 + 57.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.61960352124192003759012324783, −11.02715704917790115045661618500, −10.27835187639088217070579456424, −9.066358542982056099144250277653, −7.69436890189288659943328642939, −7.23680764751147333042318409073, −5.56294786868471239030670604670, −4.26868282590240362558673437447, −2.96635171083309175710332525999, −1.02054133062628186279778472957,
1.89003009872714159174122067251, 4.45195324283088068808126145144, 5.13386039490432478840979664405, 6.06372241257703946075242763506, 7.75320363200552935131872194897, 8.348659797670763256090687180223, 9.148298352906073614789668973835, 10.47372821948765557451304786321, 11.49809378103700360964807445659, 12.15966617283517753671347124021