L(s) = 1 | + (0.809 − 0.587i)2-s + (0.118 + 0.363i)3-s + (0.309 − 0.951i)4-s + (−2.61 − 1.90i)5-s + (0.309 + 0.224i)6-s + (0.618 − 1.90i)7-s + (−0.309 − 0.951i)8-s + (2.30 − 1.67i)9-s − 3.23·10-s + 0.381·12-s + (1 − 0.726i)13-s + (−0.618 − 1.90i)14-s + (0.381 − 1.17i)15-s + (−0.809 − 0.587i)16-s + (−0.5 − 0.363i)17-s + (0.881 − 2.71i)18-s + ⋯ |
L(s) = 1 | + (0.572 − 0.415i)2-s + (0.0681 + 0.209i)3-s + (0.154 − 0.475i)4-s + (−1.17 − 0.850i)5-s + (0.126 + 0.0916i)6-s + (0.233 − 0.718i)7-s + (−0.109 − 0.336i)8-s + (0.769 − 0.559i)9-s − 1.02·10-s + 0.110·12-s + (0.277 − 0.201i)13-s + (−0.165 − 0.508i)14-s + (0.0986 − 0.303i)15-s + (−0.202 − 0.146i)16-s + (−0.121 − 0.0881i)17-s + (0.207 − 0.639i)18-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 242 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.0694 + 0.997i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 242 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.0694 + 0.997i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.08767 - 1.01455i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.08767 - 1.01455i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.809 + 0.587i)T \) |
| 11 | \( 1 \) |
good | 3 | \( 1 + (-0.118 - 0.363i)T + (-2.42 + 1.76i)T^{2} \) |
| 5 | \( 1 + (2.61 + 1.90i)T + (1.54 + 4.75i)T^{2} \) |
| 7 | \( 1 + (-0.618 + 1.90i)T + (-5.66 - 4.11i)T^{2} \) |
| 13 | \( 1 + (-1 + 0.726i)T + (4.01 - 12.3i)T^{2} \) |
| 17 | \( 1 + (0.5 + 0.363i)T + (5.25 + 16.1i)T^{2} \) |
| 19 | \( 1 + (-1.80 - 5.56i)T + (-15.3 + 11.1i)T^{2} \) |
| 23 | \( 1 - 1.23T + 23T^{2} \) |
| 29 | \( 1 + (1.38 - 4.25i)T + (-23.4 - 17.0i)T^{2} \) |
| 31 | \( 1 + (1.61 - 1.17i)T + (9.57 - 29.4i)T^{2} \) |
| 37 | \( 1 + (1.14 - 3.52i)T + (-29.9 - 21.7i)T^{2} \) |
| 41 | \( 1 + (1.73 + 5.34i)T + (-33.1 + 24.0i)T^{2} \) |
| 43 | \( 1 - 8.56T + 43T^{2} \) |
| 47 | \( 1 + (2 + 6.15i)T + (-38.0 + 27.6i)T^{2} \) |
| 53 | \( 1 + (-1.23 + 0.898i)T + (16.3 - 50.4i)T^{2} \) |
| 59 | \( 1 + (2.66 - 8.19i)T + (-47.7 - 34.6i)T^{2} \) |
| 61 | \( 1 + (2 + 1.45i)T + (18.8 + 58.0i)T^{2} \) |
| 67 | \( 1 - 11.0T + 67T^{2} \) |
| 71 | \( 1 + (-4.23 - 3.07i)T + (21.9 + 67.5i)T^{2} \) |
| 73 | \( 1 + (3.20 - 9.87i)T + (-59.0 - 42.9i)T^{2} \) |
| 79 | \( 1 + (-10.8 + 7.88i)T + (24.4 - 75.1i)T^{2} \) |
| 83 | \( 1 + (-7.54 - 5.48i)T + (25.6 + 78.9i)T^{2} \) |
| 89 | \( 1 + 8.09T + 89T^{2} \) |
| 97 | \( 1 + (5.78 - 4.20i)T + (29.9 - 92.2i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.13391597230518203999324649006, −11.04792708763238496898337874890, −10.17165186982091714835247829450, −9.020455933836662506220168654293, −7.903428273838257440654242891503, −6.94301287702127475648664203303, −5.32924461674939101775743649597, −4.18850573822963334137827279339, −3.61651189708445922294139290111, −1.15064692771825852063622843627,
2.53945534883162019605907442548, 3.88969746326576793561985612984, 4.99285091912796351877255536375, 6.44675294999558231433764344432, 7.36609618030235790531557392809, 8.029387781688264784204851226824, 9.285461830873707087141197828003, 10.85628774414615155413395713435, 11.42657731741718537053885591501, 12.36729479989783727031224790626