L(s) = 1 | + (0.809 − 0.587i)2-s + (0.809 + 2.48i)3-s + (0.309 − 0.951i)4-s + (1 + 0.726i)5-s + (2.11 + 1.53i)6-s + (0.618 − 1.90i)7-s + (−0.309 − 0.951i)8-s + (−3.11 + 2.26i)9-s + 1.23·10-s + 2.61·12-s + (−2.61 + 1.90i)13-s + (−0.618 − 1.90i)14-s + (−1 + 3.07i)15-s + (−0.809 − 0.587i)16-s + (1.30 + 0.951i)17-s + (−1.19 + 3.66i)18-s + ⋯ |
L(s) = 1 | + (0.572 − 0.415i)2-s + (0.467 + 1.43i)3-s + (0.154 − 0.475i)4-s + (0.447 + 0.324i)5-s + (0.864 + 0.628i)6-s + (0.233 − 0.718i)7-s + (−0.109 − 0.336i)8-s + (−1.03 + 0.755i)9-s + 0.390·10-s + 0.755·12-s + (−0.726 + 0.527i)13-s + (−0.165 − 0.508i)14-s + (−0.258 + 0.794i)15-s + (−0.202 − 0.146i)16-s + (0.317 + 0.230i)17-s + (−0.280 + 0.863i)18-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 242 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.859 - 0.511i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 242 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.859 - 0.511i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.90664 + 0.524394i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.90664 + 0.524394i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.809 + 0.587i)T \) |
| 11 | \( 1 \) |
good | 3 | \( 1 + (-0.809 - 2.48i)T + (-2.42 + 1.76i)T^{2} \) |
| 5 | \( 1 + (-1 - 0.726i)T + (1.54 + 4.75i)T^{2} \) |
| 7 | \( 1 + (-0.618 + 1.90i)T + (-5.66 - 4.11i)T^{2} \) |
| 13 | \( 1 + (2.61 - 1.90i)T + (4.01 - 12.3i)T^{2} \) |
| 17 | \( 1 + (-1.30 - 0.951i)T + (5.25 + 16.1i)T^{2} \) |
| 19 | \( 1 + (0.263 + 0.812i)T + (-15.3 + 11.1i)T^{2} \) |
| 23 | \( 1 + 3.23T + 23T^{2} \) |
| 29 | \( 1 + (-1.38 + 4.25i)T + (-23.4 - 17.0i)T^{2} \) |
| 31 | \( 1 + (1.61 - 1.17i)T + (9.57 - 29.4i)T^{2} \) |
| 37 | \( 1 + (-3 + 9.23i)T + (-29.9 - 21.7i)T^{2} \) |
| 41 | \( 1 + (1.04 + 3.21i)T + (-33.1 + 24.0i)T^{2} \) |
| 43 | \( 1 + 11.5T + 43T^{2} \) |
| 47 | \( 1 + (-0.763 - 2.35i)T + (-38.0 + 27.6i)T^{2} \) |
| 53 | \( 1 + (-8.47 + 6.15i)T + (16.3 - 50.4i)T^{2} \) |
| 59 | \( 1 + (1.97 - 6.06i)T + (-47.7 - 34.6i)T^{2} \) |
| 61 | \( 1 + (-5.23 - 3.80i)T + (18.8 + 58.0i)T^{2} \) |
| 67 | \( 1 + 0.0901T + 67T^{2} \) |
| 71 | \( 1 + (-0.618 - 0.449i)T + (21.9 + 67.5i)T^{2} \) |
| 73 | \( 1 + (3.89 - 12.0i)T + (-59.0 - 42.9i)T^{2} \) |
| 79 | \( 1 + (10.8 - 7.88i)T + (24.4 - 75.1i)T^{2} \) |
| 83 | \( 1 + (5.11 + 3.71i)T + (25.6 + 78.9i)T^{2} \) |
| 89 | \( 1 - 3.09T + 89T^{2} \) |
| 97 | \( 1 + (11.2 - 8.14i)T + (29.9 - 92.2i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.05717476907753655681009291847, −11.04442193863887965202048835412, −10.13163324045146856990940772832, −9.812709393115662634898190517099, −8.572748680462971571180717010943, −7.13171615466677766962296537009, −5.70609321137377057384270336703, −4.51445603638552435177993498522, −3.80322869645990840255999087989, −2.39979923442256710516860608301,
1.80265991350573246380517491413, 3.02937557113702297031089403643, 5.02944613625552842122694455913, 5.98367482414487934934370539257, 7.03652027742650428547053725984, 7.946760194045910800547119645129, 8.702649818882557514345143099777, 9.967523282830812710681219337904, 11.68172474388461247062292754415, 12.26859009590965001025064901080