Properties

Label 2-24150-1.1-c1-0-34
Degree $2$
Conductor $24150$
Sign $1$
Analytic cond. $192.838$
Root an. cond. $13.8866$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s + 3-s + 4-s + 6-s − 7-s + 8-s + 9-s − 11-s + 12-s + 2·13-s − 14-s + 16-s + 6·17-s + 18-s + 5·19-s − 21-s − 22-s + 23-s + 24-s + 2·26-s + 27-s − 28-s + 8·29-s + 4·31-s + 32-s − 33-s + 6·34-s + ⋯
L(s)  = 1  + 0.707·2-s + 0.577·3-s + 1/2·4-s + 0.408·6-s − 0.377·7-s + 0.353·8-s + 1/3·9-s − 0.301·11-s + 0.288·12-s + 0.554·13-s − 0.267·14-s + 1/4·16-s + 1.45·17-s + 0.235·18-s + 1.14·19-s − 0.218·21-s − 0.213·22-s + 0.208·23-s + 0.204·24-s + 0.392·26-s + 0.192·27-s − 0.188·28-s + 1.48·29-s + 0.718·31-s + 0.176·32-s − 0.174·33-s + 1.02·34-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 24150 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 24150 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(24150\)    =    \(2 \cdot 3 \cdot 5^{2} \cdot 7 \cdot 23\)
Sign: $1$
Analytic conductor: \(192.838\)
Root analytic conductor: \(13.8866\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 24150,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(5.603376698\)
\(L(\frac12)\) \(\approx\) \(5.603376698\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 - T \)
3 \( 1 - T \)
5 \( 1 \)
7 \( 1 + T \)
23 \( 1 - T \)
good11 \( 1 + T + p T^{2} \)
13 \( 1 - 2 T + p T^{2} \)
17 \( 1 - 6 T + p T^{2} \)
19 \( 1 - 5 T + p T^{2} \)
29 \( 1 - 8 T + p T^{2} \)
31 \( 1 - 4 T + p T^{2} \)
37 \( 1 - 6 T + p T^{2} \)
41 \( 1 + 11 T + p T^{2} \)
43 \( 1 - 2 T + p T^{2} \)
47 \( 1 - 3 T + p T^{2} \)
53 \( 1 + 9 T + p T^{2} \)
59 \( 1 + 4 T + p T^{2} \)
61 \( 1 - 10 T + p T^{2} \)
67 \( 1 + 6 T + p T^{2} \)
71 \( 1 + 6 T + p T^{2} \)
73 \( 1 - 2 T + p T^{2} \)
79 \( 1 + 2 T + p T^{2} \)
83 \( 1 - 4 T + p T^{2} \)
89 \( 1 - 6 T + p T^{2} \)
97 \( 1 + 17 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−15.40259356323090, −14.78687974399123, −14.23946857452361, −13.81061913696558, −13.39654337004202, −12.82181637234835, −12.14726652401371, −11.87972704160650, −11.15845611209504, −10.35474540492147, −10.04282758056863, −9.450204434807167, −8.719707465347674, −7.991696029777103, −7.725570267142127, −6.883106640040863, −6.387942389455786, −5.659392844841057, −5.110660265843075, −4.423066374409473, −3.637697387034054, −3.065251312333451, −2.708973426093632, −1.539967017773856, −0.8762690625688995, 0.8762690625688995, 1.539967017773856, 2.708973426093632, 3.065251312333451, 3.637697387034054, 4.423066374409473, 5.110660265843075, 5.659392844841057, 6.387942389455786, 6.883106640040863, 7.725570267142127, 7.991696029777103, 8.719707465347674, 9.450204434807167, 10.04282758056863, 10.35474540492147, 11.15845611209504, 11.87972704160650, 12.14726652401371, 12.82181637234835, 13.39654337004202, 13.81061913696558, 14.23946857452361, 14.78687974399123, 15.40259356323090

Graph of the $Z$-function along the critical line