L(s) = 1 | + (−0.382 − 0.923i)2-s + (−0.382 − 0.923i)3-s + (−0.707 + 0.707i)4-s + (−0.707 + 0.707i)6-s + (0.923 + 0.382i)8-s + (−0.707 + 0.707i)9-s + (0.923 + 0.382i)12-s − i·16-s + (1.30 − 1.30i)17-s + (0.923 + 0.382i)18-s + (−0.292 + 0.707i)19-s − 0.765i·23-s − i·24-s + (0.923 + 0.382i)27-s − 1.41i·31-s + (−0.923 + 0.382i)32-s + ⋯ |
L(s) = 1 | + (−0.382 − 0.923i)2-s + (−0.382 − 0.923i)3-s + (−0.707 + 0.707i)4-s + (−0.707 + 0.707i)6-s + (0.923 + 0.382i)8-s + (−0.707 + 0.707i)9-s + (0.923 + 0.382i)12-s − i·16-s + (1.30 − 1.30i)17-s + (0.923 + 0.382i)18-s + (−0.292 + 0.707i)19-s − 0.765i·23-s − i·24-s + (0.923 + 0.382i)27-s − 1.41i·31-s + (−0.923 + 0.382i)32-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2400 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.936 + 0.349i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2400 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.936 + 0.349i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.6960976469\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.6960976469\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.382 + 0.923i)T \) |
| 3 | \( 1 + (0.382 + 0.923i)T \) |
| 5 | \( 1 \) |
good | 7 | \( 1 + T^{2} \) |
| 11 | \( 1 + (0.707 - 0.707i)T^{2} \) |
| 13 | \( 1 + (0.707 - 0.707i)T^{2} \) |
| 17 | \( 1 + (-1.30 + 1.30i)T - iT^{2} \) |
| 19 | \( 1 + (0.292 - 0.707i)T + (-0.707 - 0.707i)T^{2} \) |
| 23 | \( 1 + 0.765iT - T^{2} \) |
| 29 | \( 1 + (0.707 + 0.707i)T^{2} \) |
| 31 | \( 1 + 1.41iT - T^{2} \) |
| 37 | \( 1 + (0.707 + 0.707i)T^{2} \) |
| 41 | \( 1 - iT^{2} \) |
| 43 | \( 1 + (-0.707 - 0.707i)T^{2} \) |
| 47 | \( 1 + (1.30 + 1.30i)T + iT^{2} \) |
| 53 | \( 1 + (-0.541 + 1.30i)T + (-0.707 - 0.707i)T^{2} \) |
| 59 | \( 1 + (0.707 - 0.707i)T^{2} \) |
| 61 | \( 1 + (-1.70 - 0.707i)T + (0.707 + 0.707i)T^{2} \) |
| 67 | \( 1 + (-0.707 + 0.707i)T^{2} \) |
| 71 | \( 1 - iT^{2} \) |
| 73 | \( 1 - T^{2} \) |
| 79 | \( 1 + 2iT - T^{2} \) |
| 83 | \( 1 + (1.30 - 0.541i)T + (0.707 - 0.707i)T^{2} \) |
| 89 | \( 1 - iT^{2} \) |
| 97 | \( 1 - iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.733549411058835617384347463857, −8.070261362790465224162355520935, −7.47939648077898836443057349023, −6.63840434454986635838524136682, −5.57795742268729805289731033960, −4.87099352553319878899965455730, −3.68293451027635282155959161307, −2.72415438903296979684940830446, −1.83048600768335326199324407881, −0.62743478658030632897205649565,
1.33891888940821913997170961891, 3.20001569919281242022051882587, 4.07672550152726239520083227100, 4.95397038400185823921569500585, 5.61577051017303008857442992202, 6.30402828894670810580364474247, 7.12108787470916905546650831829, 8.138374061491019172232980349287, 8.618574270971896147569203374570, 9.557171606633066387894582735334