Properties

Label 2-2400-40.29-c1-0-16
Degree $2$
Conductor $2400$
Sign $0.948 - 0.316i$
Analytic cond. $19.1640$
Root an. cond. $4.37768$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s + 2i·7-s + 9-s + 4·13-s − 2i·17-s − 4i·19-s − 2i·21-s + 4i·23-s − 27-s − 6i·29-s − 2·31-s + 8·37-s − 4·39-s + 2·41-s − 4·43-s + ⋯
L(s)  = 1  − 0.577·3-s + 0.755i·7-s + 0.333·9-s + 1.10·13-s − 0.485i·17-s − 0.917i·19-s − 0.436i·21-s + 0.834i·23-s − 0.192·27-s − 1.11i·29-s − 0.359·31-s + 1.31·37-s − 0.640·39-s + 0.312·41-s − 0.609·43-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2400 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.948 - 0.316i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2400 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.948 - 0.316i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2400\)    =    \(2^{5} \cdot 3 \cdot 5^{2}\)
Sign: $0.948 - 0.316i$
Analytic conductor: \(19.1640\)
Root analytic conductor: \(4.37768\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{2400} (49, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 2400,\ (\ :1/2),\ 0.948 - 0.316i)\)

Particular Values

\(L(1)\) \(\approx\) \(1.496537743\)
\(L(\frac12)\) \(\approx\) \(1.496537743\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 + T \)
5 \( 1 \)
good7 \( 1 - 2iT - 7T^{2} \)
11 \( 1 - 11T^{2} \)
13 \( 1 - 4T + 13T^{2} \)
17 \( 1 + 2iT - 17T^{2} \)
19 \( 1 + 4iT - 19T^{2} \)
23 \( 1 - 4iT - 23T^{2} \)
29 \( 1 + 6iT - 29T^{2} \)
31 \( 1 + 2T + 31T^{2} \)
37 \( 1 - 8T + 37T^{2} \)
41 \( 1 - 2T + 41T^{2} \)
43 \( 1 + 4T + 43T^{2} \)
47 \( 1 - 12iT - 47T^{2} \)
53 \( 1 + 6T + 53T^{2} \)
59 \( 1 + 4iT - 59T^{2} \)
61 \( 1 - 61T^{2} \)
67 \( 1 - 12T + 67T^{2} \)
71 \( 1 + 12T + 71T^{2} \)
73 \( 1 - 6iT - 73T^{2} \)
79 \( 1 - 10T + 79T^{2} \)
83 \( 1 - 16T + 83T^{2} \)
89 \( 1 - 10T + 89T^{2} \)
97 \( 1 + 2iT - 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.201456728366160014112418276019, −8.193324009063504683815779123636, −7.50146990945668746921517980326, −6.45370586418131396744702583291, −5.96159217921078851660842185362, −5.14064930409693311470736756091, −4.29388693324467729935957418171, −3.23402412123181115786644503591, −2.18023878975580030149348279261, −0.870041281663465352660196142108, 0.790556167973658235651492584675, 1.86261957773123590830664150246, 3.40098750945713421189680905943, 4.04913214124790909642121575831, 4.97010407515004408024544188535, 5.93246984238772117476279397343, 6.49537248118881417138241689121, 7.33173395264954375094624551930, 8.150673485653566013322444174490, 8.844441710336480391069297210112

Graph of the $Z$-function along the critical line