L(s) = 1 | + (−0.707 + 0.707i)3-s − 1.00i·9-s + (−1.41 − 1.41i)17-s − 2i·19-s + (0.707 + 0.707i)27-s − i·49-s + 2.00·51-s + (1.41 + 1.41i)57-s − 1.00·81-s + (1.41 − 1.41i)83-s + (−1.41 − 1.41i)107-s + (1.41 − 1.41i)113-s + ⋯ |
L(s) = 1 | + (−0.707 + 0.707i)3-s − 1.00i·9-s + (−1.41 − 1.41i)17-s − 2i·19-s + (0.707 + 0.707i)27-s − i·49-s + 2.00·51-s + (1.41 + 1.41i)57-s − 1.00·81-s + (1.41 − 1.41i)83-s + (−1.41 − 1.41i)107-s + (1.41 − 1.41i)113-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2400 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.525 + 0.850i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2400 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.525 + 0.850i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.6928209460\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.6928209460\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + (0.707 - 0.707i)T \) |
| 5 | \( 1 \) |
good | 7 | \( 1 + iT^{2} \) |
| 11 | \( 1 - T^{2} \) |
| 13 | \( 1 - iT^{2} \) |
| 17 | \( 1 + (1.41 + 1.41i)T + iT^{2} \) |
| 19 | \( 1 + 2iT - T^{2} \) |
| 23 | \( 1 + iT^{2} \) |
| 29 | \( 1 - T^{2} \) |
| 31 | \( 1 - T^{2} \) |
| 37 | \( 1 + iT^{2} \) |
| 41 | \( 1 - T^{2} \) |
| 43 | \( 1 + iT^{2} \) |
| 47 | \( 1 - iT^{2} \) |
| 53 | \( 1 + iT^{2} \) |
| 59 | \( 1 + T^{2} \) |
| 61 | \( 1 - T^{2} \) |
| 67 | \( 1 - iT^{2} \) |
| 71 | \( 1 + T^{2} \) |
| 73 | \( 1 + iT^{2} \) |
| 79 | \( 1 + T^{2} \) |
| 83 | \( 1 + (-1.41 + 1.41i)T - iT^{2} \) |
| 89 | \( 1 + T^{2} \) |
| 97 | \( 1 - iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.171653848163662675633704117135, −8.526903600020311783245740846791, −7.13345846980144087644264091706, −6.81975181285477433919526399452, −5.82910223441519128053224827724, −4.81732360643643099612166989005, −4.58073494474341555171819922978, −3.32496083964286841919791289447, −2.36193084304251209585062625195, −0.51925584784192570297122705194,
1.43888144377707342146046351329, 2.26500757659459225931017918643, 3.70508193587329733889521690601, 4.52730536841506968345562110299, 5.59427009073439977881760091911, 6.19206676530015780928148700485, 6.79940384947373625385627303428, 7.84310338928159656485968237136, 8.246047028835859226879352566407, 9.202734681872988058869238199746