| L(s) = 1 | + (−0.332 + 1.69i)3-s − 1.60i·7-s + (−2.77 − 1.13i)9-s − 1.66·11-s + 2.64·13-s + 4.67i·17-s − 5.55i·19-s + (2.71 + 0.532i)21-s + 2.16·23-s + (2.84 − 4.34i)27-s + 5.40i·29-s + 7.43i·31-s + (0.553 − 2.82i)33-s − 6.24·37-s + (−0.880 + 4.49i)39-s + ⋯ |
| L(s) = 1 | + (−0.192 + 0.981i)3-s − 0.604i·7-s + (−0.926 − 0.377i)9-s − 0.501·11-s + 0.733·13-s + 1.13i·17-s − 1.27i·19-s + (0.593 + 0.116i)21-s + 0.450·23-s + (0.548 − 0.836i)27-s + 1.00i·29-s + 1.33i·31-s + (0.0964 − 0.492i)33-s − 1.02·37-s + (−0.141 + 0.720i)39-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2400 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.558 - 0.829i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2400 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.558 - 0.829i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(1.148712954\) |
| \(L(\frac12)\) |
\(\approx\) |
\(1.148712954\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 \) |
| 3 | \( 1 + (0.332 - 1.69i)T \) |
| 5 | \( 1 \) |
| good | 7 | \( 1 + 1.60iT - 7T^{2} \) |
| 11 | \( 1 + 1.66T + 11T^{2} \) |
| 13 | \( 1 - 2.64T + 13T^{2} \) |
| 17 | \( 1 - 4.67iT - 17T^{2} \) |
| 19 | \( 1 + 5.55iT - 19T^{2} \) |
| 23 | \( 1 - 2.16T + 23T^{2} \) |
| 29 | \( 1 - 5.40iT - 29T^{2} \) |
| 31 | \( 1 - 7.43iT - 31T^{2} \) |
| 37 | \( 1 + 6.24T + 37T^{2} \) |
| 41 | \( 1 - 11.8iT - 41T^{2} \) |
| 43 | \( 1 + 3.39iT - 43T^{2} \) |
| 47 | \( 1 - 8.52T + 47T^{2} \) |
| 53 | \( 1 - 8.83iT - 53T^{2} \) |
| 59 | \( 1 + 12.4T + 59T^{2} \) |
| 61 | \( 1 + 3.67T + 61T^{2} \) |
| 67 | \( 1 - 5.49iT - 67T^{2} \) |
| 71 | \( 1 + 15.9T + 71T^{2} \) |
| 73 | \( 1 - 3.59T + 73T^{2} \) |
| 79 | \( 1 - 9.55iT - 79T^{2} \) |
| 83 | \( 1 - 12.6T + 83T^{2} \) |
| 89 | \( 1 - 3.32iT - 89T^{2} \) |
| 97 | \( 1 - 13.5T + 97T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.964813434980891663351211544666, −8.837681005740094795864937020158, −7.74985292589565023936654762173, −6.83387662661520404230018745122, −6.05109532604361242034718440292, −5.14111266962657648460390033914, −4.47991320801096958219025653616, −3.58607268903871563787642399571, −2.83117678148938444764174964712, −1.20598224711074772344134856817,
0.42878410811763351750187699574, 1.80516983352089947497862687412, 2.63147076012695814964483969885, 3.66997499255708714348926184937, 4.95133698601721852772585317968, 5.79044103829444565502846189545, 6.20640827372703013937019238694, 7.34787222714900215905504346608, 7.75538044932218799501203205044, 8.660425282598383161556828915272