L(s) = 1 | − 3·3-s + 26.7·7-s + 9·9-s + 46.6·11-s + 49.6·13-s + 32.4·17-s + 4.14·19-s − 80.2·21-s − 213.·23-s − 27·27-s − 272.·29-s − 327.·31-s − 139.·33-s − 399.·37-s − 148.·39-s − 42.2·41-s − 468.·43-s + 275.·47-s + 372.·49-s − 97.2·51-s + 158.·53-s − 12.4·57-s − 566.·59-s + 206.·61-s + 240.·63-s + 351.·67-s + 639.·69-s + ⋯ |
L(s) = 1 | − 0.577·3-s + 1.44·7-s + 0.333·9-s + 1.27·11-s + 1.05·13-s + 0.462·17-s + 0.0500·19-s − 0.833·21-s − 1.93·23-s − 0.192·27-s − 1.74·29-s − 1.89·31-s − 0.737·33-s − 1.77·37-s − 0.610·39-s − 0.161·41-s − 1.66·43-s + 0.853·47-s + 1.08·49-s − 0.266·51-s + 0.409·53-s − 0.0288·57-s − 1.24·59-s + 0.433·61-s + 0.481·63-s + 0.641·67-s + 1.11·69-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2400 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2400 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(2)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{5}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + 3T \) |
| 5 | \( 1 \) |
good | 7 | \( 1 - 26.7T + 343T^{2} \) |
| 11 | \( 1 - 46.6T + 1.33e3T^{2} \) |
| 13 | \( 1 - 49.6T + 2.19e3T^{2} \) |
| 17 | \( 1 - 32.4T + 4.91e3T^{2} \) |
| 19 | \( 1 - 4.14T + 6.85e3T^{2} \) |
| 23 | \( 1 + 213.T + 1.21e4T^{2} \) |
| 29 | \( 1 + 272.T + 2.43e4T^{2} \) |
| 31 | \( 1 + 327.T + 2.97e4T^{2} \) |
| 37 | \( 1 + 399.T + 5.06e4T^{2} \) |
| 41 | \( 1 + 42.2T + 6.89e4T^{2} \) |
| 43 | \( 1 + 468.T + 7.95e4T^{2} \) |
| 47 | \( 1 - 275.T + 1.03e5T^{2} \) |
| 53 | \( 1 - 158.T + 1.48e5T^{2} \) |
| 59 | \( 1 + 566.T + 2.05e5T^{2} \) |
| 61 | \( 1 - 206.T + 2.26e5T^{2} \) |
| 67 | \( 1 - 351.T + 3.00e5T^{2} \) |
| 71 | \( 1 - 500.T + 3.57e5T^{2} \) |
| 73 | \( 1 + 987.T + 3.89e5T^{2} \) |
| 79 | \( 1 + 172.T + 4.93e5T^{2} \) |
| 83 | \( 1 - 238.T + 5.71e5T^{2} \) |
| 89 | \( 1 + 42.7T + 7.04e5T^{2} \) |
| 97 | \( 1 + 1.18e3T + 9.12e5T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.234613301963585228756170797169, −7.47113656015976376114972930371, −6.65963715649581664715899488589, −5.71468734058028057747557512992, −5.27220920661209803485295600121, −4.02848812839305842113808081785, −3.71748683459658440327923041329, −1.71975599208535118858590092462, −1.55009905315370244203527321817, 0,
1.55009905315370244203527321817, 1.71975599208535118858590092462, 3.71748683459658440327923041329, 4.02848812839305842113808081785, 5.27220920661209803485295600121, 5.71468734058028057747557512992, 6.65963715649581664715899488589, 7.47113656015976376114972930371, 8.234613301963585228756170797169