| L(s) = 1 | + (32.2 + 74.2i)3-s + (−615. − 107. i)5-s + 4.01e3i·7-s + (−4.47e3 + 4.79e3i)9-s + 1.13e4i·11-s − 1.46e4i·13-s + (−1.19e4 − 4.92e4i)15-s − 1.21e5·17-s − 2.28e4·19-s + (−2.98e5 + 1.29e5i)21-s − 4.52e5·23-s + (3.67e5 + 1.32e5i)25-s + (−5.00e5 − 1.77e5i)27-s + 9.25e5i·29-s + 1.24e6·31-s + ⋯ |
| L(s) = 1 | + (0.398 + 0.917i)3-s + (−0.985 − 0.171i)5-s + 1.67i·7-s + (−0.682 + 0.730i)9-s + 0.774i·11-s − 0.513i·13-s + (−0.235 − 0.971i)15-s − 1.45·17-s − 0.175·19-s + (−1.53 + 0.666i)21-s − 1.61·23-s + (0.941 + 0.338i)25-s + (−0.942 − 0.334i)27-s + 1.30i·29-s + 1.34·31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 240 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.235 + 0.971i)\, \overline{\Lambda}(9-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 240 ^{s/2} \, \Gamma_{\C}(s+4) \, L(s)\cr =\mathstrut & (0.235 + 0.971i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(\frac{9}{2})\) |
\(\approx\) |
\(0.4175291147\) |
| \(L(\frac12)\) |
\(\approx\) |
\(0.4175291147\) |
| \(L(5)\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 \) |
| 3 | \( 1 + (-32.2 - 74.2i)T \) |
| 5 | \( 1 + (615. + 107. i)T \) |
| good | 7 | \( 1 - 4.01e3iT - 5.76e6T^{2} \) |
| 11 | \( 1 - 1.13e4iT - 2.14e8T^{2} \) |
| 13 | \( 1 + 1.46e4iT - 8.15e8T^{2} \) |
| 17 | \( 1 + 1.21e5T + 6.97e9T^{2} \) |
| 19 | \( 1 + 2.28e4T + 1.69e10T^{2} \) |
| 23 | \( 1 + 4.52e5T + 7.83e10T^{2} \) |
| 29 | \( 1 - 9.25e5iT - 5.00e11T^{2} \) |
| 31 | \( 1 - 1.24e6T + 8.52e11T^{2} \) |
| 37 | \( 1 - 9.96e3iT - 3.51e12T^{2} \) |
| 41 | \( 1 - 3.24e6iT - 7.98e12T^{2} \) |
| 43 | \( 1 - 9.86e5iT - 1.16e13T^{2} \) |
| 47 | \( 1 + 7.49e5T + 2.38e13T^{2} \) |
| 53 | \( 1 + 3.98e6T + 6.22e13T^{2} \) |
| 59 | \( 1 - 1.17e7iT - 1.46e14T^{2} \) |
| 61 | \( 1 - 2.04e7T + 1.91e14T^{2} \) |
| 67 | \( 1 + 1.35e7iT - 4.06e14T^{2} \) |
| 71 | \( 1 - 1.35e7iT - 6.45e14T^{2} \) |
| 73 | \( 1 + 5.39e7iT - 8.06e14T^{2} \) |
| 79 | \( 1 + 1.08e7T + 1.51e15T^{2} \) |
| 83 | \( 1 - 5.54e7T + 2.25e15T^{2} \) |
| 89 | \( 1 + 8.17e7iT - 3.93e15T^{2} \) |
| 97 | \( 1 - 1.22e8iT - 7.83e15T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.52013765165793735361864789422, −10.44231207094212399521821732085, −9.357902304992026105256361600979, −8.596359306842205888471569339147, −7.926682437399256112394840092550, −6.35271734437789510742660934265, −5.08362246277009076085677258680, −4.32851950013530364110292839184, −3.05080998876375959996307574933, −2.09492802806145913248178311803,
0.11313602231763533707081561710, 0.78040946071286287631941901053, 2.25063009852967245917926993950, 3.68443643414917361371155777647, 4.30762908628182289306940760159, 6.32381048961898635897074256019, 7.00426124633131950981146209650, 7.923319021228308046725709559811, 8.560478520904887554450557118072, 10.01836302916097859912649659699