Properties

Label 2-240-15.14-c8-0-43
Degree $2$
Conductor $240$
Sign $0.101 - 0.994i$
Analytic cond. $97.7708$
Root an. cond. $9.88791$
Motivic weight $8$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (35.3 + 72.8i)3-s + (531. + 328. i)5-s − 1.67e3i·7-s + (−4.06e3 + 5.15e3i)9-s − 2.14e4i·11-s − 5.98e3i·13-s + (−5.12e3 + 5.03e4i)15-s − 6.92e4·17-s + 1.80e4·19-s + (1.22e5 − 5.92e4i)21-s + 9.18e4·23-s + (1.75e5 + 3.49e5i)25-s + (−5.19e5 − 1.13e5i)27-s + 1.12e6i·29-s + 1.27e6·31-s + ⋯
L(s)  = 1  + (0.436 + 0.899i)3-s + (0.850 + 0.525i)5-s − 0.697i·7-s + (−0.618 + 0.785i)9-s − 1.46i·11-s − 0.209i·13-s + (−0.101 + 0.994i)15-s − 0.828·17-s + 0.138·19-s + (0.627 − 0.304i)21-s + 0.328·23-s + (0.448 + 0.893i)25-s + (−0.976 − 0.214i)27-s + 1.59i·29-s + 1.38·31-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 240 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.101 - 0.994i)\, \overline{\Lambda}(9-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 240 ^{s/2} \, \Gamma_{\C}(s+4) \, L(s)\cr =\mathstrut & (0.101 - 0.994i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(240\)    =    \(2^{4} \cdot 3 \cdot 5\)
Sign: $0.101 - 0.994i$
Analytic conductor: \(97.7708\)
Root analytic conductor: \(9.88791\)
Motivic weight: \(8\)
Rational: no
Arithmetic: yes
Character: $\chi_{240} (209, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 240,\ (\ :4),\ 0.101 - 0.994i)\)

Particular Values

\(L(\frac{9}{2})\) \(\approx\) \(2.843812383\)
\(L(\frac12)\) \(\approx\) \(2.843812383\)
\(L(5)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 + (-35.3 - 72.8i)T \)
5 \( 1 + (-531. - 328. i)T \)
good7 \( 1 + 1.67e3iT - 5.76e6T^{2} \)
11 \( 1 + 2.14e4iT - 2.14e8T^{2} \)
13 \( 1 + 5.98e3iT - 8.15e8T^{2} \)
17 \( 1 + 6.92e4T + 6.97e9T^{2} \)
19 \( 1 - 1.80e4T + 1.69e10T^{2} \)
23 \( 1 - 9.18e4T + 7.83e10T^{2} \)
29 \( 1 - 1.12e6iT - 5.00e11T^{2} \)
31 \( 1 - 1.27e6T + 8.52e11T^{2} \)
37 \( 1 - 2.19e6iT - 3.51e12T^{2} \)
41 \( 1 + 2.90e4iT - 7.98e12T^{2} \)
43 \( 1 - 6.78e6iT - 1.16e13T^{2} \)
47 \( 1 - 1.96e6T + 2.38e13T^{2} \)
53 \( 1 - 1.23e7T + 6.22e13T^{2} \)
59 \( 1 + 5.58e6iT - 1.46e14T^{2} \)
61 \( 1 - 3.12e5T + 1.91e14T^{2} \)
67 \( 1 + 8.53e5iT - 4.06e14T^{2} \)
71 \( 1 - 3.18e7iT - 6.45e14T^{2} \)
73 \( 1 + 2.36e6iT - 8.06e14T^{2} \)
79 \( 1 + 2.92e7T + 1.51e15T^{2} \)
83 \( 1 - 6.73e7T + 2.25e15T^{2} \)
89 \( 1 - 4.90e7iT - 3.93e15T^{2} \)
97 \( 1 + 7.18e7iT - 7.83e15T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.73642738867366783116483764650, −10.07554602056070389138222143535, −9.046118473386411599061031816423, −8.235252161134792020256644178495, −6.85027936892804459189595108792, −5.80937235615636184940516854106, −4.71091579879435892935371305401, −3.41967675799077189219224287832, −2.66158110237527229172813743737, −1.04292357611805949661511616897, 0.63529750396913887337994347754, 2.02055818901616564873668937517, 2.39763889122088335696474518109, 4.28744193852211195892327193855, 5.52844492000214807105325802559, 6.50309447194375026702012505731, 7.45229957097680312825229723060, 8.670601974245223311111564389978, 9.272719972238135995704595645403, 10.24826998974935289769728699164

Graph of the $Z$-function along the critical line