L(s) = 1 | + (12.4 + 80.0i)3-s + (268. + 564. i)5-s + 1.18e3i·7-s + (−6.25e3 + 1.98e3i)9-s + 2.05e4i·11-s + 5.29e4i·13-s + (−4.18e4 + 2.84e4i)15-s + 2.52e4·17-s − 1.11e5·19-s + (−9.45e4 + 1.46e4i)21-s + 3.46e5·23-s + (−2.46e5 + 3.02e5i)25-s + (−2.36e5 − 4.75e5i)27-s + 8.59e4i·29-s + 5.62e5·31-s + ⋯ |
L(s) = 1 | + (0.153 + 0.988i)3-s + (0.429 + 0.903i)5-s + 0.491i·7-s + (−0.952 + 0.303i)9-s + 1.40i·11-s + 1.85i·13-s + (−0.826 + 0.562i)15-s + 0.302·17-s − 0.858·19-s + (−0.485 + 0.0754i)21-s + 1.23·23-s + (−0.631 + 0.775i)25-s + (−0.445 − 0.895i)27-s + 0.121i·29-s + 0.609·31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 240 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.826 + 0.562i)\, \overline{\Lambda}(9-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 240 ^{s/2} \, \Gamma_{\C}(s+4) \, L(s)\cr =\mathstrut & (-0.826 + 0.562i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{9}{2})\) |
\(\approx\) |
\(2.287772984\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.287772984\) |
\(L(5)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + (-12.4 - 80.0i)T \) |
| 5 | \( 1 + (-268. - 564. i)T \) |
good | 7 | \( 1 - 1.18e3iT - 5.76e6T^{2} \) |
| 11 | \( 1 - 2.05e4iT - 2.14e8T^{2} \) |
| 13 | \( 1 - 5.29e4iT - 8.15e8T^{2} \) |
| 17 | \( 1 - 2.52e4T + 6.97e9T^{2} \) |
| 19 | \( 1 + 1.11e5T + 1.69e10T^{2} \) |
| 23 | \( 1 - 3.46e5T + 7.83e10T^{2} \) |
| 29 | \( 1 - 8.59e4iT - 5.00e11T^{2} \) |
| 31 | \( 1 - 5.62e5T + 8.52e11T^{2} \) |
| 37 | \( 1 - 5.55e5iT - 3.51e12T^{2} \) |
| 41 | \( 1 - 4.89e6iT - 7.98e12T^{2} \) |
| 43 | \( 1 - 2.65e5iT - 1.16e13T^{2} \) |
| 47 | \( 1 + 2.91e6T + 2.38e13T^{2} \) |
| 53 | \( 1 - 1.22e7T + 6.22e13T^{2} \) |
| 59 | \( 1 - 5.62e6iT - 1.46e14T^{2} \) |
| 61 | \( 1 - 2.68e7T + 1.91e14T^{2} \) |
| 67 | \( 1 + 2.98e7iT - 4.06e14T^{2} \) |
| 71 | \( 1 + 8.69e6iT - 6.45e14T^{2} \) |
| 73 | \( 1 - 2.60e7iT - 8.06e14T^{2} \) |
| 79 | \( 1 + 9.67e6T + 1.51e15T^{2} \) |
| 83 | \( 1 + 1.32e7T + 2.25e15T^{2} \) |
| 89 | \( 1 + 9.04e7iT - 3.93e15T^{2} \) |
| 97 | \( 1 - 8.87e7iT - 7.83e15T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.18546387157685846450860901029, −10.11762931810215005335761420159, −9.526491223313105822843409590709, −8.648677840055744166259693737652, −7.14504085237027256692329707390, −6.31969934964765894089702581259, −4.97112898655498353519993782566, −4.10086882492040437563164660764, −2.74881062148503296784237541681, −1.87295914716061366594614667088,
0.62065653625975027508528592643, 0.859605219287211733172823912800, 2.44426790156778330997117738946, 3.58317320463919108555301407476, 5.31775024117739731298529735289, 5.93732307375092526257661378982, 7.21240492416906349107201679929, 8.339692002775295816554923978060, 8.710474599905584287624492953178, 10.19882729718336658854624499620