| L(s) = 1 | + (−58.3 + 56.1i)3-s + (617. + 96.4i)5-s + 3.50e3i·7-s + (252. − 6.55e3i)9-s + 2.07e4i·11-s + 2.12e4i·13-s + (−4.14e4 + 2.90e4i)15-s − 1.40e5·17-s + 1.82e5·19-s + (−1.97e5 − 2.04e5i)21-s − 4.06e5·23-s + (3.72e5 + 1.19e5i)25-s + (3.53e5 + 3.96e5i)27-s − 8.58e4i·29-s − 4.69e5·31-s + ⋯ |
| L(s) = 1 | + (−0.720 + 0.693i)3-s + (0.988 + 0.154i)5-s + 1.46i·7-s + (0.0385 − 0.999i)9-s + 1.41i·11-s + 0.742i·13-s + (−0.818 + 0.573i)15-s − 1.68·17-s + 1.40·19-s + (−1.01 − 1.05i)21-s − 1.45·23-s + (0.952 + 0.304i)25-s + (0.665 + 0.746i)27-s − 0.121i·29-s − 0.508·31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 240 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.818 + 0.573i)\, \overline{\Lambda}(9-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 240 ^{s/2} \, \Gamma_{\C}(s+4) \, L(s)\cr =\mathstrut & (-0.818 + 0.573i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(\frac{9}{2})\) |
\(\approx\) |
\(1.271153374\) |
| \(L(\frac12)\) |
\(\approx\) |
\(1.271153374\) |
| \(L(5)\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 \) |
| 3 | \( 1 + (58.3 - 56.1i)T \) |
| 5 | \( 1 + (-617. - 96.4i)T \) |
| good | 7 | \( 1 - 3.50e3iT - 5.76e6T^{2} \) |
| 11 | \( 1 - 2.07e4iT - 2.14e8T^{2} \) |
| 13 | \( 1 - 2.12e4iT - 8.15e8T^{2} \) |
| 17 | \( 1 + 1.40e5T + 6.97e9T^{2} \) |
| 19 | \( 1 - 1.82e5T + 1.69e10T^{2} \) |
| 23 | \( 1 + 4.06e5T + 7.83e10T^{2} \) |
| 29 | \( 1 + 8.58e4iT - 5.00e11T^{2} \) |
| 31 | \( 1 + 4.69e5T + 8.52e11T^{2} \) |
| 37 | \( 1 - 2.30e6iT - 3.51e12T^{2} \) |
| 41 | \( 1 - 1.66e6iT - 7.98e12T^{2} \) |
| 43 | \( 1 - 1.85e6iT - 1.16e13T^{2} \) |
| 47 | \( 1 - 5.76e6T + 2.38e13T^{2} \) |
| 53 | \( 1 - 5.45e6T + 6.22e13T^{2} \) |
| 59 | \( 1 + 9.28e6iT - 1.46e14T^{2} \) |
| 61 | \( 1 - 7.59e6T + 1.91e14T^{2} \) |
| 67 | \( 1 - 3.94e7iT - 4.06e14T^{2} \) |
| 71 | \( 1 - 1.39e7iT - 6.45e14T^{2} \) |
| 73 | \( 1 + 1.62e7iT - 8.06e14T^{2} \) |
| 79 | \( 1 + 9.06e6T + 1.51e15T^{2} \) |
| 83 | \( 1 - 4.45e7T + 2.25e15T^{2} \) |
| 89 | \( 1 + 6.34e6iT - 3.93e15T^{2} \) |
| 97 | \( 1 + 1.45e8iT - 7.83e15T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.39037235467766345950708356535, −10.04826940203266551020767440364, −9.534253713144754872599343987553, −8.770913478032471418100285745149, −6.96792430251904955679062212480, −6.09880754305924033025075883215, −5.23983812953054330243336865902, −4.32345357701799351694467962184, −2.58845181813499130781001090905, −1.69158990994107751896030078268,
0.33624406804832170313425087422, 0.995141355120817364117470647969, 2.27532220126600863536007260011, 3.84107701763774645285782461867, 5.26564121435480547273065326631, 6.04894610425882727969715109155, 7.01159400701954217974569009879, 7.947721728839037299811904293848, 9.181287100056245098930167834006, 10.56916840589538027181278120538