| L(s) = 1 | + (74.7 − 31.2i)3-s + (31.8 + 624. i)5-s − 3.42e3i·7-s + (4.61e3 − 4.66e3i)9-s + 1.57e4i·11-s + 2.70e4i·13-s + (2.18e4 + 4.56e4i)15-s + 1.42e4·17-s − 2.10e5·19-s + (−1.07e5 − 2.56e5i)21-s − 6.02e4·23-s + (−3.88e5 + 3.97e4i)25-s + (1.98e5 − 4.92e5i)27-s + 7.58e5i·29-s − 3.33e5·31-s + ⋯ |
| L(s) = 1 | + (0.922 − 0.385i)3-s + (0.0509 + 0.998i)5-s − 1.42i·7-s + (0.702 − 0.711i)9-s + 1.07i·11-s + 0.947i·13-s + (0.432 + 0.901i)15-s + 0.170·17-s − 1.61·19-s + (−0.550 − 1.31i)21-s − 0.215·23-s + (−0.994 + 0.101i)25-s + (0.374 − 0.927i)27-s + 1.07i·29-s − 0.360·31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 240 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.432 - 0.901i)\, \overline{\Lambda}(9-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 240 ^{s/2} \, \Gamma_{\C}(s+4) \, L(s)\cr =\mathstrut & (-0.432 - 0.901i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(\frac{9}{2})\) |
\(\approx\) |
\(1.590875211\) |
| \(L(\frac12)\) |
\(\approx\) |
\(1.590875211\) |
| \(L(5)\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 \) |
| 3 | \( 1 + (-74.7 + 31.2i)T \) |
| 5 | \( 1 + (-31.8 - 624. i)T \) |
| good | 7 | \( 1 + 3.42e3iT - 5.76e6T^{2} \) |
| 11 | \( 1 - 1.57e4iT - 2.14e8T^{2} \) |
| 13 | \( 1 - 2.70e4iT - 8.15e8T^{2} \) |
| 17 | \( 1 - 1.42e4T + 6.97e9T^{2} \) |
| 19 | \( 1 + 2.10e5T + 1.69e10T^{2} \) |
| 23 | \( 1 + 6.02e4T + 7.83e10T^{2} \) |
| 29 | \( 1 - 7.58e5iT - 5.00e11T^{2} \) |
| 31 | \( 1 + 3.33e5T + 8.52e11T^{2} \) |
| 37 | \( 1 - 6.83e5iT - 3.51e12T^{2} \) |
| 41 | \( 1 - 1.23e6iT - 7.98e12T^{2} \) |
| 43 | \( 1 + 1.15e6iT - 1.16e13T^{2} \) |
| 47 | \( 1 + 1.52e6T + 2.38e13T^{2} \) |
| 53 | \( 1 - 4.73e6T + 6.22e13T^{2} \) |
| 59 | \( 1 - 1.30e7iT - 1.46e14T^{2} \) |
| 61 | \( 1 + 6.62e6T + 1.91e14T^{2} \) |
| 67 | \( 1 - 2.47e7iT - 4.06e14T^{2} \) |
| 71 | \( 1 + 1.07e7iT - 6.45e14T^{2} \) |
| 73 | \( 1 + 3.48e7iT - 8.06e14T^{2} \) |
| 79 | \( 1 + 5.01e7T + 1.51e15T^{2} \) |
| 83 | \( 1 - 4.50e7T + 2.25e15T^{2} \) |
| 89 | \( 1 - 7.30e7iT - 3.93e15T^{2} \) |
| 97 | \( 1 - 1.45e8iT - 7.83e15T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.70859044315547322057843283919, −10.13705416406440820782646546208, −9.097929693105060923336605585958, −7.83092931897007655197487533432, −7.03620988505622181660757066333, −6.55524762458778547317817103525, −4.40346130267760718342126542450, −3.69922503960582176876749607083, −2.37457271402539396405068565321, −1.43102902648987674610598613268,
0.27461262407561322581255198549, 1.85309100384166495406117539670, 2.82490268867028992906520747075, 4.05226388573315281354934701107, 5.26350933537399571322268000269, 6.06860593464950920703953892847, 7.968005342906942630347239933234, 8.526655962811455338984300670928, 9.128161932422761506519653833237, 10.16852934885799186980877225723