Properties

Label 2-240-15.14-c8-0-11
Degree $2$
Conductor $240$
Sign $-0.997 - 0.0702i$
Analytic cond. $97.7708$
Root an. cond. $9.88791$
Motivic weight $8$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−65.3 − 47.8i)3-s + (−529. + 332. i)5-s − 1.22e3i·7-s + (1.98e3 + 6.25e3i)9-s + 2.74e4i·11-s + 3.85e4i·13-s + (5.05e4 + 3.55e3i)15-s − 1.42e5·17-s + 1.65e5·19-s + (−5.87e4 + 8.02e4i)21-s + 1.46e5·23-s + (1.69e5 − 3.52e5i)25-s + (1.69e5 − 5.03e5i)27-s + 3.16e4i·29-s + 1.95e5·31-s + ⋯
L(s)  = 1  + (−0.806 − 0.590i)3-s + (−0.846 + 0.532i)5-s − 0.511i·7-s + (0.302 + 0.953i)9-s + 1.87i·11-s + 1.34i·13-s + (0.997 + 0.0702i)15-s − 1.71·17-s + 1.27·19-s + (−0.302 + 0.412i)21-s + 0.521·23-s + (0.432 − 0.901i)25-s + (0.318 − 0.947i)27-s + 0.0447i·29-s + 0.211·31-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 240 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.997 - 0.0702i)\, \overline{\Lambda}(9-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 240 ^{s/2} \, \Gamma_{\C}(s+4) \, L(s)\cr =\mathstrut & (-0.997 - 0.0702i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(240\)    =    \(2^{4} \cdot 3 \cdot 5\)
Sign: $-0.997 - 0.0702i$
Analytic conductor: \(97.7708\)
Root analytic conductor: \(9.88791\)
Motivic weight: \(8\)
Rational: no
Arithmetic: yes
Character: $\chi_{240} (209, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 240,\ (\ :4),\ -0.997 - 0.0702i)\)

Particular Values

\(L(\frac{9}{2})\) \(\approx\) \(0.6075886923\)
\(L(\frac12)\) \(\approx\) \(0.6075886923\)
\(L(5)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 + (65.3 + 47.8i)T \)
5 \( 1 + (529. - 332. i)T \)
good7 \( 1 + 1.22e3iT - 5.76e6T^{2} \)
11 \( 1 - 2.74e4iT - 2.14e8T^{2} \)
13 \( 1 - 3.85e4iT - 8.15e8T^{2} \)
17 \( 1 + 1.42e5T + 6.97e9T^{2} \)
19 \( 1 - 1.65e5T + 1.69e10T^{2} \)
23 \( 1 - 1.46e5T + 7.83e10T^{2} \)
29 \( 1 - 3.16e4iT - 5.00e11T^{2} \)
31 \( 1 - 1.95e5T + 8.52e11T^{2} \)
37 \( 1 - 1.15e6iT - 3.51e12T^{2} \)
41 \( 1 - 4.37e6iT - 7.98e12T^{2} \)
43 \( 1 - 2.97e6iT - 1.16e13T^{2} \)
47 \( 1 + 1.90e5T + 2.38e13T^{2} \)
53 \( 1 - 7.12e6T + 6.22e13T^{2} \)
59 \( 1 + 4.09e6iT - 1.46e14T^{2} \)
61 \( 1 + 1.39e6T + 1.91e14T^{2} \)
67 \( 1 + 1.93e6iT - 4.06e14T^{2} \)
71 \( 1 + 1.51e7iT - 6.45e14T^{2} \)
73 \( 1 - 2.32e7iT - 8.06e14T^{2} \)
79 \( 1 + 2.71e7T + 1.51e15T^{2} \)
83 \( 1 + 1.71e7T + 2.25e15T^{2} \)
89 \( 1 - 2.41e7iT - 3.93e15T^{2} \)
97 \( 1 - 6.69e7iT - 7.83e15T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.42436230219185201232384796060, −10.39915858338999344487335478396, −9.356757416467172044053700493283, −7.84541994747696691216543367183, −6.95937744562194358199235286579, −6.67387806977281364027355727888, −4.79573577181254721713767823021, −4.23907875138617175756616725421, −2.43659104466525116875355428085, −1.28032467472882136040891324205, 0.22024081005214716085574094440, 0.802593561822052273288882832338, 3.00965837913132638281003516384, 3.95680033582855454662798613027, 5.25527296989499548499290496688, 5.80487104976670470141720110567, 7.20600992446504179716397875294, 8.545137302330256182012927979689, 9.035118953213457910575790196099, 10.52514658961941707685663669943

Graph of the $Z$-function along the critical line