Properties

Label 2-24-24.5-c8-0-7
Degree $2$
Conductor $24$
Sign $1$
Analytic cond. $9.77708$
Root an. cond. $3.12683$
Motivic weight $8$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 16·2-s − 81·3-s + 256·4-s − 866·5-s + 1.29e3·6-s − 4.79e3·7-s − 4.09e3·8-s + 6.56e3·9-s + 1.38e4·10-s + 9.11e3·11-s − 2.07e4·12-s + 7.67e4·14-s + 7.01e4·15-s + 6.55e4·16-s − 1.04e5·18-s − 2.21e5·20-s + 3.88e5·21-s − 1.45e5·22-s + 3.31e5·24-s + 3.59e5·25-s − 5.31e5·27-s − 1.22e6·28-s + 7.45e5·29-s − 1.12e6·30-s − 1.61e6·31-s − 1.04e6·32-s − 7.38e5·33-s + ⋯
L(s)  = 1  − 2-s − 3-s + 4-s − 1.38·5-s + 6-s − 1.99·7-s − 8-s + 9-s + 1.38·10-s + 0.622·11-s − 12-s + 1.99·14-s + 1.38·15-s + 16-s − 18-s − 1.38·20-s + 1.99·21-s − 0.622·22-s + 24-s + 0.919·25-s − 27-s − 1.99·28-s + 1.05·29-s − 1.38·30-s − 1.75·31-s − 32-s − 0.622·33-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 24 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(9-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 24 ^{s/2} \, \Gamma_{\C}(s+4) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(24\)    =    \(2^{3} \cdot 3\)
Sign: $1$
Analytic conductor: \(9.77708\)
Root analytic conductor: \(3.12683\)
Motivic weight: \(8\)
Rational: yes
Arithmetic: yes
Character: $\chi_{24} (5, \cdot )$
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 24,\ (\ :4),\ 1)\)

Particular Values

\(L(\frac{9}{2})\) \(\approx\) \(0.2679836411\)
\(L(\frac12)\) \(\approx\) \(0.2679836411\)
\(L(5)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + p^{4} T \)
3 \( 1 + p^{4} T \)
good5 \( 1 + 866 T + p^{8} T^{2} \)
7 \( 1 + 4798 T + p^{8} T^{2} \)
11 \( 1 - 9118 T + p^{8} T^{2} \)
13 \( ( 1 - p^{4} T )( 1 + p^{4} T ) \)
17 \( ( 1 - p^{4} T )( 1 + p^{4} T ) \)
19 \( ( 1 - p^{4} T )( 1 + p^{4} T ) \)
23 \( ( 1 - p^{4} T )( 1 + p^{4} T ) \)
29 \( 1 - 745438 T + p^{8} T^{2} \)
31 \( 1 + 1618558 T + p^{8} T^{2} \)
37 \( ( 1 - p^{4} T )( 1 + p^{4} T ) \)
41 \( ( 1 - p^{4} T )( 1 + p^{4} T ) \)
43 \( ( 1 - p^{4} T )( 1 + p^{4} T ) \)
47 \( ( 1 - p^{4} T )( 1 + p^{4} T ) \)
53 \( 1 - 5425438 T + p^{8} T^{2} \)
59 \( 1 + 22852322 T + p^{8} T^{2} \)
61 \( ( 1 - p^{4} T )( 1 + p^{4} T ) \)
67 \( ( 1 - p^{4} T )( 1 + p^{4} T ) \)
71 \( ( 1 - p^{4} T )( 1 + p^{4} T ) \)
73 \( 1 - 9756482 T + p^{8} T^{2} \)
79 \( 1 - 5237762 T + p^{8} T^{2} \)
83 \( 1 - 77460958 T + p^{8} T^{2} \)
89 \( ( 1 - p^{4} T )( 1 + p^{4} T ) \)
97 \( 1 - 121608962 T + p^{8} T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−16.15621479590326232233898062940, −15.40700836189711710309712745834, −12.64742323669699213695779219941, −11.83157488138598237393357434009, −10.53649148619754362258249523839, −9.243242250556266741226433073685, −7.32113473444828856020806993270, −6.30695919810997142288053028637, −3.58163988038719878136511937771, −0.48671599862018099230745548647, 0.48671599862018099230745548647, 3.58163988038719878136511937771, 6.30695919810997142288053028637, 7.32113473444828856020806993270, 9.243242250556266741226433073685, 10.53649148619754362258249523839, 11.83157488138598237393357434009, 12.64742323669699213695779219941, 15.40700836189711710309712745834, 16.15621479590326232233898062940

Graph of the $Z$-function along the critical line