Properties

Label 2-24-24.5-c18-0-18
Degree $2$
Conductor $24$
Sign $1$
Analytic cond. $49.2926$
Root an. cond. $7.02087$
Motivic weight $18$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 512·2-s − 1.96e4·3-s + 2.62e5·4-s − 3.79e6·5-s − 1.00e7·6-s − 6.20e7·7-s + 1.34e8·8-s + 3.87e8·9-s − 1.94e9·10-s − 4.21e9·11-s − 5.15e9·12-s − 3.17e10·14-s + 7.46e10·15-s + 6.87e10·16-s + 1.98e11·18-s − 9.94e11·20-s + 1.22e12·21-s − 2.15e12·22-s − 2.64e12·24-s + 1.05e13·25-s − 7.62e12·27-s − 1.62e13·28-s − 2.05e12·29-s + 3.82e13·30-s − 1.79e13·31-s + 3.51e13·32-s + 8.29e13·33-s + ⋯
L(s)  = 1  + 2-s − 3-s + 4-s − 1.94·5-s − 6-s − 1.53·7-s + 8-s + 9-s − 1.94·10-s − 1.78·11-s − 12-s − 1.53·14-s + 1.94·15-s + 16-s + 18-s − 1.94·20-s + 1.53·21-s − 1.78·22-s − 24-s + 2.77·25-s − 27-s − 1.53·28-s − 0.141·29-s + 1.94·30-s − 0.677·31-s + 32-s + 1.78·33-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 24 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(19-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 24 ^{s/2} \, \Gamma_{\C}(s+9) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(24\)    =    \(2^{3} \cdot 3\)
Sign: $1$
Analytic conductor: \(49.2926\)
Root analytic conductor: \(7.02087\)
Motivic weight: \(18\)
Rational: yes
Arithmetic: yes
Character: $\chi_{24} (5, \cdot )$
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 24,\ (\ :9),\ 1)\)

Particular Values

\(L(\frac{19}{2})\) \(\approx\) \(0.6930064396\)
\(L(\frac12)\) \(\approx\) \(0.6930064396\)
\(L(10)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 - p^{9} T \)
3 \( 1 + p^{9} T \)
good5 \( 1 + 3792962 T + p^{18} T^{2} \)
7 \( 1 + 62062090 T + p^{18} T^{2} \)
11 \( 1 + 4213830710 T + p^{18} T^{2} \)
13 \( ( 1 - p^{9} T )( 1 + p^{9} T ) \)
17 \( ( 1 - p^{9} T )( 1 + p^{9} T ) \)
19 \( ( 1 - p^{9} T )( 1 + p^{9} T ) \)
23 \( ( 1 - p^{9} T )( 1 + p^{9} T ) \)
29 \( 1 + 2050619582450 T + p^{18} T^{2} \)
31 \( 1 + 17914374449242 T + p^{18} T^{2} \)
37 \( ( 1 - p^{9} T )( 1 + p^{9} T ) \)
41 \( ( 1 - p^{9} T )( 1 + p^{9} T ) \)
43 \( ( 1 - p^{9} T )( 1 + p^{9} T ) \)
47 \( ( 1 - p^{9} T )( 1 + p^{9} T ) \)
53 \( 1 + 2499566246756066 T + p^{18} T^{2} \)
59 \( 1 - 11981727959858890 T + p^{18} T^{2} \)
61 \( ( 1 - p^{9} T )( 1 + p^{9} T ) \)
67 \( ( 1 - p^{9} T )( 1 + p^{9} T ) \)
71 \( ( 1 - p^{9} T )( 1 + p^{9} T ) \)
73 \( 1 + 502555043913550 T + p^{18} T^{2} \)
79 \( 1 - 57281163325307462 T + p^{18} T^{2} \)
83 \( 1 + 308366268689415494 T + p^{18} T^{2} \)
89 \( ( 1 - p^{9} T )( 1 + p^{9} T ) \)
97 \( 1 - 390854313434426690 T + p^{18} T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.01608820503301182550217434800, −12.49498795901700714197823458711, −11.33863516591238008563025706762, −10.35661677242432929114261383625, −7.73868106005406849914602574082, −6.79529080069011390477701581765, −5.32391321907679460956075701142, −4.05026216673184795819849699308, −2.98490849016731633205391026660, −0.39977569999722499046106151864, 0.39977569999722499046106151864, 2.98490849016731633205391026660, 4.05026216673184795819849699308, 5.32391321907679460956075701142, 6.79529080069011390477701581765, 7.73868106005406849914602574082, 10.35661677242432929114261383625, 11.33863516591238008563025706762, 12.49498795901700714197823458711, 13.01608820503301182550217434800

Graph of the $Z$-function along the critical line