Properties

Label 2-24-1.1-c21-0-3
Degree $2$
Conductor $24$
Sign $1$
Analytic cond. $67.0745$
Root an. cond. $8.18990$
Motivic weight $21$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 5.90e4·3-s + 1.51e7·5-s − 8.40e8·7-s + 3.48e9·9-s − 3.34e10·11-s − 3.01e11·13-s + 8.93e11·15-s + 5.14e12·17-s + 4.56e13·19-s − 4.96e13·21-s + 2.41e13·23-s − 2.47e14·25-s + 2.05e14·27-s + 7.82e14·29-s + 8.00e15·31-s − 1.97e15·33-s − 1.27e16·35-s + 2.06e16·37-s − 1.77e16·39-s − 7.03e16·41-s + 6.95e15·43-s + 5.27e16·45-s − 2.12e17·47-s + 1.48e17·49-s + 3.03e17·51-s + 8.69e17·53-s − 5.06e17·55-s + ⋯
L(s)  = 1  + 0.577·3-s + 0.693·5-s − 1.12·7-s + 0.333·9-s − 0.389·11-s − 0.605·13-s + 0.400·15-s + 0.618·17-s + 1.70·19-s − 0.649·21-s + 0.121·23-s − 0.519·25-s + 0.192·27-s + 0.345·29-s + 1.75·31-s − 0.224·33-s − 0.779·35-s + 0.706·37-s − 0.349·39-s − 0.818·41-s + 0.0490·43-s + 0.231·45-s − 0.589·47-s + 0.265·49-s + 0.357·51-s + 0.682·53-s − 0.269·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 24 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(22-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 24 ^{s/2} \, \Gamma_{\C}(s+21/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(24\)    =    \(2^{3} \cdot 3\)
Sign: $1$
Analytic conductor: \(67.0745\)
Root analytic conductor: \(8.18990\)
Motivic weight: \(21\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 24,\ (\ :21/2),\ 1)\)

Particular Values

\(L(11)\) \(\approx\) \(2.678631510\)
\(L(\frac12)\) \(\approx\) \(2.678631510\)
\(L(\frac{23}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 - 5.90e4T \)
good5 \( 1 - 1.51e7T + 4.76e14T^{2} \)
7 \( 1 + 8.40e8T + 5.58e17T^{2} \)
11 \( 1 + 3.34e10T + 7.40e21T^{2} \)
13 \( 1 + 3.01e11T + 2.47e23T^{2} \)
17 \( 1 - 5.14e12T + 6.90e25T^{2} \)
19 \( 1 - 4.56e13T + 7.14e26T^{2} \)
23 \( 1 - 2.41e13T + 3.94e28T^{2} \)
29 \( 1 - 7.82e14T + 5.13e30T^{2} \)
31 \( 1 - 8.00e15T + 2.08e31T^{2} \)
37 \( 1 - 2.06e16T + 8.55e32T^{2} \)
41 \( 1 + 7.03e16T + 7.38e33T^{2} \)
43 \( 1 - 6.95e15T + 2.00e34T^{2} \)
47 \( 1 + 2.12e17T + 1.30e35T^{2} \)
53 \( 1 - 8.69e17T + 1.62e36T^{2} \)
59 \( 1 - 9.80e17T + 1.54e37T^{2} \)
61 \( 1 - 5.62e18T + 3.10e37T^{2} \)
67 \( 1 - 2.36e18T + 2.22e38T^{2} \)
71 \( 1 - 4.99e19T + 7.52e38T^{2} \)
73 \( 1 - 2.63e19T + 1.34e39T^{2} \)
79 \( 1 - 1.05e20T + 7.08e39T^{2} \)
83 \( 1 - 8.96e19T + 1.99e40T^{2} \)
89 \( 1 - 4.71e20T + 8.65e40T^{2} \)
97 \( 1 + 3.93e20T + 5.27e41T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.24946089075749263368831497600, −12.00203764494187239692616813898, −10.02068701766496791631639238167, −9.552997313669869539024598391341, −7.906190898629386068097696633591, −6.56709444262571735979837336660, −5.20991534354749667434179922198, −3.40550180442753395537849298506, −2.43850099094929870349059792233, −0.844104728546681090579063769177, 0.844104728546681090579063769177, 2.43850099094929870349059792233, 3.40550180442753395537849298506, 5.20991534354749667434179922198, 6.56709444262571735979837336660, 7.906190898629386068097696633591, 9.552997313669869539024598391341, 10.02068701766496791631639238167, 12.00203764494187239692616813898, 13.24946089075749263368831497600

Graph of the $Z$-function along the critical line