Properties

Label 2-23e2-1.1-c3-0-30
Degree $2$
Conductor $529$
Sign $1$
Analytic cond. $31.2120$
Root an. cond. $5.58677$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3.49·2-s − 4.75·3-s + 4.24·4-s + 6.95·5-s + 16.6·6-s + 9.95·7-s + 13.1·8-s − 4.34·9-s − 24.3·10-s − 3.72·11-s − 20.1·12-s + 64.1·13-s − 34.8·14-s − 33.1·15-s − 79.9·16-s + 111.·17-s + 15.2·18-s + 134.·19-s + 29.5·20-s − 47.3·21-s + 13.0·22-s − 62.5·24-s − 76.5·25-s − 224.·26-s + 149.·27-s + 42.2·28-s − 74.2·29-s + ⋯
L(s)  = 1  − 1.23·2-s − 0.915·3-s + 0.530·4-s + 0.622·5-s + 1.13·6-s + 0.537·7-s + 0.581·8-s − 0.160·9-s − 0.769·10-s − 0.101·11-s − 0.485·12-s + 1.36·13-s − 0.664·14-s − 0.570·15-s − 1.24·16-s + 1.58·17-s + 0.199·18-s + 1.62·19-s + 0.330·20-s − 0.492·21-s + 0.126·22-s − 0.532·24-s − 0.612·25-s − 1.69·26-s + 1.06·27-s + 0.284·28-s − 0.475·29-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 529 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 529 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(529\)    =    \(23^{2}\)
Sign: $1$
Analytic conductor: \(31.2120\)
Root analytic conductor: \(5.58677\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 529,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(0.8785518635\)
\(L(\frac12)\) \(\approx\) \(0.8785518635\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad23 \( 1 \)
good2 \( 1 + 3.49T + 8T^{2} \)
3 \( 1 + 4.75T + 27T^{2} \)
5 \( 1 - 6.95T + 125T^{2} \)
7 \( 1 - 9.95T + 343T^{2} \)
11 \( 1 + 3.72T + 1.33e3T^{2} \)
13 \( 1 - 64.1T + 2.19e3T^{2} \)
17 \( 1 - 111.T + 4.91e3T^{2} \)
19 \( 1 - 134.T + 6.85e3T^{2} \)
29 \( 1 + 74.2T + 2.43e4T^{2} \)
31 \( 1 + 205.T + 2.97e4T^{2} \)
37 \( 1 + 155.T + 5.06e4T^{2} \)
41 \( 1 + 252.T + 6.89e4T^{2} \)
43 \( 1 - 252.T + 7.95e4T^{2} \)
47 \( 1 + 435.T + 1.03e5T^{2} \)
53 \( 1 - 383.T + 1.48e5T^{2} \)
59 \( 1 - 584.T + 2.05e5T^{2} \)
61 \( 1 - 746.T + 2.26e5T^{2} \)
67 \( 1 - 298.T + 3.00e5T^{2} \)
71 \( 1 - 458.T + 3.57e5T^{2} \)
73 \( 1 - 293.T + 3.89e5T^{2} \)
79 \( 1 + 804.T + 4.93e5T^{2} \)
83 \( 1 + 219.T + 5.71e5T^{2} \)
89 \( 1 + 972.T + 7.04e5T^{2} \)
97 \( 1 + 657.T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.25259456940613492347253236312, −9.710178531838387365710986431233, −8.685267734727491012375985692615, −7.937821924116143031944711058808, −6.96698693643008865740818084496, −5.68555935010689831890187966307, −5.26325541235090650025820103810, −3.54559415060557543086600060758, −1.66683070944278179918882715670, −0.78558237608970070348816471180, 0.78558237608970070348816471180, 1.66683070944278179918882715670, 3.54559415060557543086600060758, 5.26325541235090650025820103810, 5.68555935010689831890187966307, 6.96698693643008865740818084496, 7.937821924116143031944711058808, 8.685267734727491012375985692615, 9.710178531838387365710986431233, 10.25259456940613492347253236312

Graph of the $Z$-function along the critical line