Properties

Label 2-23e2-1.1-c3-0-24
Degree $2$
Conductor $529$
Sign $1$
Analytic cond. $31.2120$
Root an. cond. $5.58677$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3.16·2-s − 8.06·3-s + 2.02·4-s + 10.4·5-s − 25.5·6-s − 26.5·7-s − 18.9·8-s + 38.0·9-s + 32.9·10-s + 43.5·11-s − 16.3·12-s − 57.1·13-s − 84.1·14-s − 83.9·15-s − 76.1·16-s − 7.91·17-s + 120.·18-s + 41.9·19-s + 21.0·20-s + 214.·21-s + 137.·22-s + 152.·24-s − 16.7·25-s − 180.·26-s − 89.5·27-s − 53.8·28-s + 231.·29-s + ⋯
L(s)  = 1  + 1.11·2-s − 1.55·3-s + 0.253·4-s + 0.930·5-s − 1.73·6-s − 1.43·7-s − 0.835·8-s + 1.41·9-s + 1.04·10-s + 1.19·11-s − 0.393·12-s − 1.21·13-s − 1.60·14-s − 1.44·15-s − 1.18·16-s − 0.112·17-s + 1.57·18-s + 0.506·19-s + 0.235·20-s + 2.22·21-s + 1.33·22-s + 1.29·24-s − 0.134·25-s − 1.36·26-s − 0.638·27-s − 0.363·28-s + 1.48·29-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 529 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 529 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(529\)    =    \(23^{2}\)
Sign: $1$
Analytic conductor: \(31.2120\)
Root analytic conductor: \(5.58677\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 529,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(1.525121995\)
\(L(\frac12)\) \(\approx\) \(1.525121995\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad23 \( 1 \)
good2 \( 1 - 3.16T + 8T^{2} \)
3 \( 1 + 8.06T + 27T^{2} \)
5 \( 1 - 10.4T + 125T^{2} \)
7 \( 1 + 26.5T + 343T^{2} \)
11 \( 1 - 43.5T + 1.33e3T^{2} \)
13 \( 1 + 57.1T + 2.19e3T^{2} \)
17 \( 1 + 7.91T + 4.91e3T^{2} \)
19 \( 1 - 41.9T + 6.85e3T^{2} \)
29 \( 1 - 231.T + 2.43e4T^{2} \)
31 \( 1 - 202.T + 2.97e4T^{2} \)
37 \( 1 + 372.T + 5.06e4T^{2} \)
41 \( 1 - 111.T + 6.89e4T^{2} \)
43 \( 1 - 325.T + 7.95e4T^{2} \)
47 \( 1 - 466.T + 1.03e5T^{2} \)
53 \( 1 - 365.T + 1.48e5T^{2} \)
59 \( 1 - 26.1T + 2.05e5T^{2} \)
61 \( 1 + 136.T + 2.26e5T^{2} \)
67 \( 1 - 288.T + 3.00e5T^{2} \)
71 \( 1 - 510.T + 3.57e5T^{2} \)
73 \( 1 - 500.T + 3.89e5T^{2} \)
79 \( 1 - 181.T + 4.93e5T^{2} \)
83 \( 1 + 150.T + 5.71e5T^{2} \)
89 \( 1 + 317.T + 7.04e5T^{2} \)
97 \( 1 - 645.T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.42952296332705373989041728143, −9.769919775542855457333187056499, −9.076212454663537235259045096993, −6.92855571360362784605790331932, −6.43095509972032479725114609781, −5.76956528951248260724491425696, −4.98391988214355485173018604778, −3.97073476464021801460665343985, −2.64407816155247160274615332671, −0.67789851657221676017784459693, 0.67789851657221676017784459693, 2.64407816155247160274615332671, 3.97073476464021801460665343985, 4.98391988214355485173018604778, 5.76956528951248260724491425696, 6.43095509972032479725114609781, 6.92855571360362784605790331932, 9.076212454663537235259045096993, 9.769919775542855457333187056499, 10.42952296332705373989041728143

Graph of the $Z$-function along the critical line