Properties

Label 2-2394-133.132-c1-0-10
Degree $2$
Conductor $2394$
Sign $0.237 - 0.971i$
Analytic cond. $19.1161$
Root an. cond. $4.37220$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  i·2-s − 4-s + 2.99i·5-s + (−0.713 − 2.54i)7-s + i·8-s + 2.99·10-s − 1.70·11-s + 1.66·13-s + (−2.54 + 0.713i)14-s + 16-s + 4.46i·17-s + (2.13 − 3.79i)19-s − 2.99i·20-s + 1.70i·22-s − 0.487·23-s + ⋯
L(s)  = 1  − 0.707i·2-s − 0.5·4-s + 1.34i·5-s + (−0.269 − 0.962i)7-s + 0.353i·8-s + 0.947·10-s − 0.512·11-s + 0.461·13-s + (−0.680 + 0.190i)14-s + 0.250·16-s + 1.08i·17-s + (0.490 − 0.871i)19-s − 0.670i·20-s + 0.362i·22-s − 0.101·23-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2394 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.237 - 0.971i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2394 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.237 - 0.971i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2394\)    =    \(2 \cdot 3^{2} \cdot 7 \cdot 19\)
Sign: $0.237 - 0.971i$
Analytic conductor: \(19.1161\)
Root analytic conductor: \(4.37220\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{2394} (1063, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 2394,\ (\ :1/2),\ 0.237 - 0.971i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.9674552682\)
\(L(\frac12)\) \(\approx\) \(0.9674552682\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + iT \)
3 \( 1 \)
7 \( 1 + (0.713 + 2.54i)T \)
19 \( 1 + (-2.13 + 3.79i)T \)
good5 \( 1 - 2.99iT - 5T^{2} \)
11 \( 1 + 1.70T + 11T^{2} \)
13 \( 1 - 1.66T + 13T^{2} \)
17 \( 1 - 4.46iT - 17T^{2} \)
23 \( 1 + 0.487T + 23T^{2} \)
29 \( 1 - 1.42iT - 29T^{2} \)
31 \( 1 + 3.18T + 31T^{2} \)
37 \( 1 - 9.68iT - 37T^{2} \)
41 \( 1 - 3.63T + 41T^{2} \)
43 \( 1 + 4.40T + 43T^{2} \)
47 \( 1 + 2.80iT - 47T^{2} \)
53 \( 1 - 8.53iT - 53T^{2} \)
59 \( 1 + 9.05T + 59T^{2} \)
61 \( 1 + 3.96iT - 61T^{2} \)
67 \( 1 + 2.67iT - 67T^{2} \)
71 \( 1 - 8.53iT - 71T^{2} \)
73 \( 1 - 3.63iT - 73T^{2} \)
79 \( 1 - 14.7iT - 79T^{2} \)
83 \( 1 + 1.60iT - 83T^{2} \)
89 \( 1 - 7.27T + 89T^{2} \)
97 \( 1 + 4.57T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.370381829877402280576175910776, −8.326642005119157511759195000636, −7.58360574943968446857974570426, −6.81159145556131031277644748469, −6.17759598242250016733598401834, −5.04055970781736842525549727517, −3.99666559985468062079882989856, −3.31569296357258093683837451301, −2.58193088139731441821124457627, −1.27933890130997330738388694124, 0.34555071055414300820388454701, 1.75382875123150865279829929701, 3.08305657370018756735867286886, 4.19587971347236795127800054987, 5.13959508961647100556851298196, 5.53882683029252283092517678839, 6.29996577672888075996886210353, 7.44888583456774185968162445559, 8.050950170887110828335061911939, 8.847710954927794389102273640980

Graph of the $Z$-function along the critical line