Properties

Label 2-2394-1.1-c1-0-24
Degree $2$
Conductor $2394$
Sign $1$
Analytic cond. $19.1161$
Root an. cond. $4.37220$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s + 4-s + 2.85·5-s + 7-s + 8-s + 2.85·10-s − 4.61·11-s + 5.23·13-s + 14-s + 16-s − 2.47·17-s − 19-s + 2.85·20-s − 4.61·22-s + 5.70·23-s + 3.14·25-s + 5.23·26-s + 28-s + 8.85·29-s − 0.472·31-s + 32-s − 2.47·34-s + 2.85·35-s + 4.85·37-s − 38-s + 2.85·40-s − 5.32·41-s + ⋯
L(s)  = 1  + 0.707·2-s + 0.5·4-s + 1.27·5-s + 0.377·7-s + 0.353·8-s + 0.902·10-s − 1.39·11-s + 1.45·13-s + 0.267·14-s + 0.250·16-s − 0.599·17-s − 0.229·19-s + 0.638·20-s − 0.984·22-s + 1.19·23-s + 0.629·25-s + 1.02·26-s + 0.188·28-s + 1.64·29-s − 0.0847·31-s + 0.176·32-s − 0.423·34-s + 0.482·35-s + 0.798·37-s − 0.162·38-s + 0.451·40-s − 0.831·41-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2394 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2394 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2394\)    =    \(2 \cdot 3^{2} \cdot 7 \cdot 19\)
Sign: $1$
Analytic conductor: \(19.1161\)
Root analytic conductor: \(4.37220\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 2394,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(3.806913464\)
\(L(\frac12)\) \(\approx\) \(3.806913464\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 - T \)
3 \( 1 \)
7 \( 1 - T \)
19 \( 1 + T \)
good5 \( 1 - 2.85T + 5T^{2} \)
11 \( 1 + 4.61T + 11T^{2} \)
13 \( 1 - 5.23T + 13T^{2} \)
17 \( 1 + 2.47T + 17T^{2} \)
23 \( 1 - 5.70T + 23T^{2} \)
29 \( 1 - 8.85T + 29T^{2} \)
31 \( 1 + 0.472T + 31T^{2} \)
37 \( 1 - 4.85T + 37T^{2} \)
41 \( 1 + 5.32T + 41T^{2} \)
43 \( 1 + 7.61T + 43T^{2} \)
47 \( 1 - 3.85T + 47T^{2} \)
53 \( 1 - 11.3T + 53T^{2} \)
59 \( 1 - 8.85T + 59T^{2} \)
61 \( 1 + 2.32T + 61T^{2} \)
67 \( 1 - 10.9T + 67T^{2} \)
71 \( 1 + 16.0T + 71T^{2} \)
73 \( 1 + 7.23T + 73T^{2} \)
79 \( 1 + 13.3T + 79T^{2} \)
83 \( 1 + 8.94T + 83T^{2} \)
89 \( 1 - 1.38T + 89T^{2} \)
97 \( 1 - 3.85T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.735912427785060027200071700491, −8.394723335542688423890482660872, −7.19989190130707047104776269913, −6.45455863470615685828068501095, −5.71953682293020473232997294757, −5.14738887025707870184973032707, −4.29666128466038975278772245658, −3.04421093520902745252441482350, −2.32795393932379781245519563327, −1.24999027785414522844343316450, 1.24999027785414522844343316450, 2.32795393932379781245519563327, 3.04421093520902745252441482350, 4.29666128466038975278772245658, 5.14738887025707870184973032707, 5.71953682293020473232997294757, 6.45455863470615685828068501095, 7.19989190130707047104776269913, 8.394723335542688423890482660872, 8.735912427785060027200071700491

Graph of the $Z$-function along the critical line