L(s) = 1 | + (−0.866 − 0.5i)3-s + (−0.5 − 0.866i)5-s + (0.866 − 0.5i)7-s + (1.36 − 0.366i)11-s + 0.999i·15-s + (0.5 − 0.866i)17-s − 0.999·21-s + (−0.5 − 0.866i)23-s + (−0.499 + 0.866i)25-s + i·27-s + (1 + i)29-s + (−1.36 − 0.366i)33-s + (−0.866 − 0.499i)35-s + (0.5 + 0.866i)37-s + (0.366 − 1.36i)47-s + ⋯ |
L(s) = 1 | + (−0.866 − 0.5i)3-s + (−0.5 − 0.866i)5-s + (0.866 − 0.5i)7-s + (1.36 − 0.366i)11-s + 0.999i·15-s + (0.5 − 0.866i)17-s − 0.999·21-s + (−0.5 − 0.866i)23-s + (−0.499 + 0.866i)25-s + i·27-s + (1 + i)29-s + (−1.36 − 0.366i)33-s + (−0.866 − 0.499i)35-s + (0.5 + 0.866i)37-s + (0.366 − 1.36i)47-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2380 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.405 + 0.914i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2380 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.405 + 0.914i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.9130024997\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.9130024997\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 + (0.5 + 0.866i)T \) |
| 7 | \( 1 + (-0.866 + 0.5i)T \) |
| 17 | \( 1 + (-0.5 + 0.866i)T \) |
good | 3 | \( 1 + (0.866 + 0.5i)T + (0.5 + 0.866i)T^{2} \) |
| 11 | \( 1 + (-1.36 + 0.366i)T + (0.866 - 0.5i)T^{2} \) |
| 13 | \( 1 - iT^{2} \) |
| 19 | \( 1 + (-0.5 + 0.866i)T^{2} \) |
| 23 | \( 1 + (0.5 + 0.866i)T + (-0.5 + 0.866i)T^{2} \) |
| 29 | \( 1 + (-1 - i)T + iT^{2} \) |
| 31 | \( 1 + (-0.866 + 0.5i)T^{2} \) |
| 37 | \( 1 + (-0.5 - 0.866i)T + (-0.5 + 0.866i)T^{2} \) |
| 41 | \( 1 + iT^{2} \) |
| 43 | \( 1 + iT^{2} \) |
| 47 | \( 1 + (-0.366 + 1.36i)T + (-0.866 - 0.5i)T^{2} \) |
| 53 | \( 1 + (1.36 - 0.366i)T + (0.866 - 0.5i)T^{2} \) |
| 59 | \( 1 + (-0.5 + 0.866i)T + (-0.5 - 0.866i)T^{2} \) |
| 61 | \( 1 + (-0.866 - 0.5i)T^{2} \) |
| 67 | \( 1 + (0.866 - 0.5i)T^{2} \) |
| 71 | \( 1 - iT^{2} \) |
| 73 | \( 1 + (0.866 + 0.5i)T + (0.5 + 0.866i)T^{2} \) |
| 79 | \( 1 + (1.36 + 0.366i)T + (0.866 + 0.5i)T^{2} \) |
| 83 | \( 1 + (1 + i)T + iT^{2} \) |
| 89 | \( 1 + (0.866 - 0.5i)T + (0.5 - 0.866i)T^{2} \) |
| 97 | \( 1 + T + T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.738695762234061330593963015833, −8.229790070686177518896529886678, −7.24706687873156774693055629626, −6.65901378430686667340386318130, −5.77318160191011952772285708569, −4.92599008614071804441628388348, −4.30102591005454452173239061413, −3.28478029140572576540239651431, −1.51573507383796495794383090234, −0.796766442715945526127340485753,
1.56205874740269964577555394445, 2.78094287693098407116864880043, 4.09217156655785281732411023889, 4.40940605015943033306542149757, 5.70086677318436190526264742079, 6.06053099242675684511107980341, 7.04745471430968167662089604122, 7.894876571192519725163616500105, 8.505838067225583047027353518920, 9.628954699927713269625778819949