L(s) = 1 | + (−0.309 − 0.951i)2-s + (−1.34 − 1.34i)3-s + (−0.809 + 0.587i)4-s + (0.156 + 0.987i)5-s + (−0.863 + 1.69i)6-s + (−0.707 + 0.707i)7-s + (0.809 + 0.587i)8-s + 2.61i·9-s + (0.891 − 0.453i)10-s + (1.87 + 0.297i)12-s + (0.891 + 0.453i)14-s + (1.11 − 1.53i)15-s + (0.309 − 0.951i)16-s + (−0.707 − 0.707i)17-s + (2.48 − 0.809i)18-s + ⋯ |
L(s) = 1 | + (−0.309 − 0.951i)2-s + (−1.34 − 1.34i)3-s + (−0.809 + 0.587i)4-s + (0.156 + 0.987i)5-s + (−0.863 + 1.69i)6-s + (−0.707 + 0.707i)7-s + (0.809 + 0.587i)8-s + 2.61i·9-s + (0.891 − 0.453i)10-s + (1.87 + 0.297i)12-s + (0.891 + 0.453i)14-s + (1.11 − 1.53i)15-s + (0.309 − 0.951i)16-s + (−0.707 − 0.707i)17-s + (2.48 − 0.809i)18-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2380 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.973 - 0.229i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2380 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.973 - 0.229i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.2200652213\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.2200652213\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.309 + 0.951i)T \) |
| 5 | \( 1 + (-0.156 - 0.987i)T \) |
| 7 | \( 1 + (0.707 - 0.707i)T \) |
| 17 | \( 1 + (0.707 + 0.707i)T \) |
good | 3 | \( 1 + (1.34 + 1.34i)T + iT^{2} \) |
| 11 | \( 1 + T^{2} \) |
| 13 | \( 1 + iT^{2} \) |
| 19 | \( 1 - T^{2} \) |
| 23 | \( 1 - iT^{2} \) |
| 29 | \( 1 + T^{2} \) |
| 31 | \( 1 + 0.312iT - T^{2} \) |
| 37 | \( 1 - iT^{2} \) |
| 41 | \( 1 + 1.78T + T^{2} \) |
| 43 | \( 1 + (1.26 + 1.26i)T + iT^{2} \) |
| 47 | \( 1 + iT^{2} \) |
| 53 | \( 1 + (-1.39 + 1.39i)T - iT^{2} \) |
| 59 | \( 1 - T^{2} \) |
| 61 | \( 1 - 0.907T + T^{2} \) |
| 67 | \( 1 + (-0.221 + 0.221i)T - iT^{2} \) |
| 71 | \( 1 + T^{2} \) |
| 73 | \( 1 + (-1.34 + 1.34i)T - iT^{2} \) |
| 79 | \( 1 - T^{2} \) |
| 83 | \( 1 - iT^{2} \) |
| 89 | \( 1 + T^{2} \) |
| 97 | \( 1 + (0.831 + 0.831i)T + iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.738857189621636020559089689011, −7.928017037324063090032099301560, −6.86912976667406812039086057403, −6.73975282045325316029294181393, −5.61674115188759642957080279455, −5.01575962039635286726347578309, −3.54403930598806076523956462998, −2.46162824287803306284612647781, −1.87824258015921376691261008820, −0.23022992711889408612598310086,
1.10361651391728393228813074795, 3.67594659039608820880894761869, 4.26858029627544478616356087406, 4.97562962635618265062319733532, 5.60394008556861771646155943609, 6.40092771695290809750315986596, 6.89282810429118017114373461100, 8.220222783337443902032895290612, 8.932919796769556324563763218252, 9.635080858260541200270606562344