L(s) = 1 | + (−0.309 + 0.951i)2-s + (1.34 + 1.34i)3-s + (−0.809 − 0.587i)4-s + (0.987 + 0.156i)5-s + (−1.69 + 0.863i)6-s + (−0.707 + 0.707i)7-s + (0.809 − 0.587i)8-s + 2.61i·9-s + (−0.453 + 0.891i)10-s + (−0.297 − 1.87i)12-s + (−0.453 − 0.891i)14-s + (1.11 + 1.53i)15-s + (0.309 + 0.951i)16-s + (−0.707 − 0.707i)17-s + (−2.48 − 0.809i)18-s + ⋯ |
L(s) = 1 | + (−0.309 + 0.951i)2-s + (1.34 + 1.34i)3-s + (−0.809 − 0.587i)4-s + (0.987 + 0.156i)5-s + (−1.69 + 0.863i)6-s + (−0.707 + 0.707i)7-s + (0.809 − 0.587i)8-s + 2.61i·9-s + (−0.453 + 0.891i)10-s + (−0.297 − 1.87i)12-s + (−0.453 − 0.891i)14-s + (1.11 + 1.53i)15-s + (0.309 + 0.951i)16-s + (−0.707 − 0.707i)17-s + (−2.48 − 0.809i)18-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2380 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.973 - 0.229i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2380 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.973 - 0.229i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.594659119\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.594659119\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.309 - 0.951i)T \) |
| 5 | \( 1 + (-0.987 - 0.156i)T \) |
| 7 | \( 1 + (0.707 - 0.707i)T \) |
| 17 | \( 1 + (0.707 + 0.707i)T \) |
good | 3 | \( 1 + (-1.34 - 1.34i)T + iT^{2} \) |
| 11 | \( 1 + T^{2} \) |
| 13 | \( 1 + iT^{2} \) |
| 19 | \( 1 - T^{2} \) |
| 23 | \( 1 - iT^{2} \) |
| 29 | \( 1 + T^{2} \) |
| 31 | \( 1 + 1.97iT - T^{2} \) |
| 37 | \( 1 - iT^{2} \) |
| 41 | \( 1 - 0.907T + T^{2} \) |
| 43 | \( 1 + (-0.642 - 0.642i)T + iT^{2} \) |
| 47 | \( 1 + iT^{2} \) |
| 53 | \( 1 + (-0.221 + 0.221i)T - iT^{2} \) |
| 59 | \( 1 - T^{2} \) |
| 61 | \( 1 + 1.78T + T^{2} \) |
| 67 | \( 1 + (-1.39 + 1.39i)T - iT^{2} \) |
| 71 | \( 1 + T^{2} \) |
| 73 | \( 1 + (1.34 - 1.34i)T - iT^{2} \) |
| 79 | \( 1 - T^{2} \) |
| 83 | \( 1 - iT^{2} \) |
| 89 | \( 1 + T^{2} \) |
| 97 | \( 1 + (-0.831 - 0.831i)T + iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.353058643432715797336227819681, −9.029999892038229938231654442666, −8.177060199846275137823861994625, −7.39119047437029434841846104666, −6.32884515199826340182159840295, −5.61618013109713395293578138826, −4.80098936349360220639770229157, −4.00664045902728485141363286328, −2.88751553767092953182936254826, −2.15590566452575610219066717288,
1.08491514305354580980120844824, 1.88926848967920869298066708663, 2.74959060061627368377209498401, 3.44032762102994986961845047696, 4.42465249836147888554673514290, 5.90137119968696210447353778576, 6.77177779749748038255385876694, 7.35629333744845668600389747030, 8.264728943273299603500401808247, 8.951731069731522439917019916409