L(s) = 1 | − i·2-s − 4-s + (0.707 + 0.707i)5-s + (−0.707 + 0.707i)7-s + i·8-s − i·9-s + (0.707 − 0.707i)10-s + (0.707 + 0.707i)14-s + 16-s + (0.707 + 0.707i)17-s − 18-s + (−0.707 − 0.707i)20-s + 1.00i·25-s + (0.707 − 0.707i)28-s + 1.41i·31-s − i·32-s + ⋯ |
L(s) = 1 | − i·2-s − 4-s + (0.707 + 0.707i)5-s + (−0.707 + 0.707i)7-s + i·8-s − i·9-s + (0.707 − 0.707i)10-s + (0.707 + 0.707i)14-s + 16-s + (0.707 + 0.707i)17-s − 18-s + (−0.707 − 0.707i)20-s + 1.00i·25-s + (0.707 − 0.707i)28-s + 1.41i·31-s − i·32-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2380 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.973 + 0.229i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2380 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.973 + 0.229i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.104022783\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.104022783\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + iT \) |
| 5 | \( 1 + (-0.707 - 0.707i)T \) |
| 7 | \( 1 + (0.707 - 0.707i)T \) |
| 17 | \( 1 + (-0.707 - 0.707i)T \) |
good | 3 | \( 1 + iT^{2} \) |
| 11 | \( 1 + T^{2} \) |
| 13 | \( 1 + iT^{2} \) |
| 19 | \( 1 - T^{2} \) |
| 23 | \( 1 - iT^{2} \) |
| 29 | \( 1 + T^{2} \) |
| 31 | \( 1 - 1.41iT - T^{2} \) |
| 37 | \( 1 - iT^{2} \) |
| 41 | \( 1 - 1.41T + T^{2} \) |
| 43 | \( 1 + (-1 - i)T + iT^{2} \) |
| 47 | \( 1 + iT^{2} \) |
| 53 | \( 1 + (1 - i)T - iT^{2} \) |
| 59 | \( 1 - T^{2} \) |
| 61 | \( 1 - 1.41T + T^{2} \) |
| 67 | \( 1 + (-1 + i)T - iT^{2} \) |
| 71 | \( 1 + T^{2} \) |
| 73 | \( 1 - iT^{2} \) |
| 79 | \( 1 - T^{2} \) |
| 83 | \( 1 - iT^{2} \) |
| 89 | \( 1 + T^{2} \) |
| 97 | \( 1 + iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.355960860335904050242455256495, −8.749407638280104200511856529420, −7.71293078602757502531962380212, −6.55925307736347401376813206222, −5.99884061854269894851017389083, −5.24254768192264360094551513924, −3.94520240484397356413798897410, −3.19056714988133921265580611168, −2.54020803281646930377149632054, −1.32448107629556006116966191888,
0.860171004991120034213858472170, 2.42976102596866217726565997053, 3.79583724411447550304035224826, 4.60260824857823248245905883490, 5.41692582769968750477827848802, 5.97900761811232476276361508005, 6.93426698274232658116784882784, 7.62757832301467480779320201633, 8.255724693089175600178292643958, 9.209876300699893169085455763457