Properties

Label 2-2380-2380.1427-c0-0-4
Degree $2$
Conductor $2380$
Sign $0.973 + 0.229i$
Analytic cond. $1.18777$
Root an. cond. $1.08985$
Motivic weight $0$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  i·2-s − 4-s + (0.707 + 0.707i)5-s + (−0.707 + 0.707i)7-s + i·8-s i·9-s + (0.707 − 0.707i)10-s + (0.707 + 0.707i)14-s + 16-s + (0.707 + 0.707i)17-s − 18-s + (−0.707 − 0.707i)20-s + 1.00i·25-s + (0.707 − 0.707i)28-s + 1.41i·31-s i·32-s + ⋯
L(s)  = 1  i·2-s − 4-s + (0.707 + 0.707i)5-s + (−0.707 + 0.707i)7-s + i·8-s i·9-s + (0.707 − 0.707i)10-s + (0.707 + 0.707i)14-s + 16-s + (0.707 + 0.707i)17-s − 18-s + (−0.707 − 0.707i)20-s + 1.00i·25-s + (0.707 − 0.707i)28-s + 1.41i·31-s i·32-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2380 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.973 + 0.229i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2380 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.973 + 0.229i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2380\)    =    \(2^{2} \cdot 5 \cdot 7 \cdot 17\)
Sign: $0.973 + 0.229i$
Analytic conductor: \(1.18777\)
Root analytic conductor: \(1.08985\)
Motivic weight: \(0\)
Rational: no
Arithmetic: yes
Character: $\chi_{2380} (1427, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 2380,\ (\ :0),\ 0.973 + 0.229i)\)

Particular Values

\(L(\frac{1}{2})\) \(\approx\) \(1.104022783\)
\(L(\frac12)\) \(\approx\) \(1.104022783\)
\(L(1)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + iT \)
5 \( 1 + (-0.707 - 0.707i)T \)
7 \( 1 + (0.707 - 0.707i)T \)
17 \( 1 + (-0.707 - 0.707i)T \)
good3 \( 1 + iT^{2} \)
11 \( 1 + T^{2} \)
13 \( 1 + iT^{2} \)
19 \( 1 - T^{2} \)
23 \( 1 - iT^{2} \)
29 \( 1 + T^{2} \)
31 \( 1 - 1.41iT - T^{2} \)
37 \( 1 - iT^{2} \)
41 \( 1 - 1.41T + T^{2} \)
43 \( 1 + (-1 - i)T + iT^{2} \)
47 \( 1 + iT^{2} \)
53 \( 1 + (1 - i)T - iT^{2} \)
59 \( 1 - T^{2} \)
61 \( 1 - 1.41T + T^{2} \)
67 \( 1 + (-1 + i)T - iT^{2} \)
71 \( 1 + T^{2} \)
73 \( 1 - iT^{2} \)
79 \( 1 - T^{2} \)
83 \( 1 - iT^{2} \)
89 \( 1 + T^{2} \)
97 \( 1 + iT^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.355960860335904050242455256495, −8.749407638280104200511856529420, −7.71293078602757502531962380212, −6.55925307736347401376813206222, −5.99884061854269894851017389083, −5.24254768192264360094551513924, −3.94520240484397356413798897410, −3.19056714988133921265580611168, −2.54020803281646930377149632054, −1.32448107629556006116966191888, 0.860171004991120034213858472170, 2.42976102596866217726565997053, 3.79583724411447550304035224826, 4.60260824857823248245905883490, 5.41692582769968750477827848802, 5.97900761811232476276361508005, 6.93426698274232658116784882784, 7.62757832301467480779320201633, 8.255724693089175600178292643958, 9.209876300699893169085455763457

Graph of the $Z$-function along the critical line