L(s) = 1 | − i·2-s − 4-s + (−0.707 − 0.707i)5-s + (0.707 − 0.707i)7-s + i·8-s − i·9-s + (−0.707 + 0.707i)10-s + (−0.707 − 0.707i)14-s + 16-s + (−0.707 − 0.707i)17-s − 18-s + (0.707 + 0.707i)20-s + 1.00i·25-s + (−0.707 + 0.707i)28-s − 1.41i·31-s − i·32-s + ⋯ |
L(s) = 1 | − i·2-s − 4-s + (−0.707 − 0.707i)5-s + (0.707 − 0.707i)7-s + i·8-s − i·9-s + (−0.707 + 0.707i)10-s + (−0.707 − 0.707i)14-s + 16-s + (−0.707 − 0.707i)17-s − 18-s + (0.707 + 0.707i)20-s + 1.00i·25-s + (−0.707 + 0.707i)28-s − 1.41i·31-s − i·32-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2380 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.973 - 0.229i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2380 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.973 - 0.229i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.7839367746\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.7839367746\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + iT \) |
| 5 | \( 1 + (0.707 + 0.707i)T \) |
| 7 | \( 1 + (-0.707 + 0.707i)T \) |
| 17 | \( 1 + (0.707 + 0.707i)T \) |
good | 3 | \( 1 + iT^{2} \) |
| 11 | \( 1 + T^{2} \) |
| 13 | \( 1 + iT^{2} \) |
| 19 | \( 1 - T^{2} \) |
| 23 | \( 1 - iT^{2} \) |
| 29 | \( 1 + T^{2} \) |
| 31 | \( 1 + 1.41iT - T^{2} \) |
| 37 | \( 1 - iT^{2} \) |
| 41 | \( 1 + 1.41T + T^{2} \) |
| 43 | \( 1 + (-1 - i)T + iT^{2} \) |
| 47 | \( 1 + iT^{2} \) |
| 53 | \( 1 + (1 - i)T - iT^{2} \) |
| 59 | \( 1 - T^{2} \) |
| 61 | \( 1 + 1.41T + T^{2} \) |
| 67 | \( 1 + (-1 + i)T - iT^{2} \) |
| 71 | \( 1 + T^{2} \) |
| 73 | \( 1 - iT^{2} \) |
| 79 | \( 1 - T^{2} \) |
| 83 | \( 1 - iT^{2} \) |
| 89 | \( 1 + T^{2} \) |
| 97 | \( 1 + iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.996609065502955061692792304982, −8.060195084873142323700984205922, −7.53357421066440524075847683160, −6.38764215521442081737001694948, −5.22104919491739287854534410689, −4.45854022370546569958032718972, −3.95796379500301565440331101696, −2.98417375564784335914781607416, −1.61762039679279264893636010816, −0.55344993039045456239274174995,
1.87926495496926783563178486210, 3.12738448427431443570941624584, 4.20826606834830570860546507677, 4.92909894037253855737162102802, 5.67238911821466429024931359381, 6.64131933019315788044050226773, 7.23835291840296568325688026906, 8.192195976582885651316398266662, 8.350109364106543044480488958869, 9.273522354957300804769774313860